Spaces:
Sleeping
Sleeping
import os | |
from datetime import datetime | |
import uuid | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
import torch | |
from huggingface_hub import login | |
from threading import Thread | |
from dotenv import load_dotenv | |
# Load environment variables | |
load_dotenv() | |
# Get the Hugging Face token from environment variables | |
hf_token = os.getenv("HUGGINGFACE_TOKEN") | |
# Load model and tokenizer | |
model_name = "google/gemma-2-2b-it" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
token=hf_token | |
) | |
def chat_with_model(messages): | |
# Prepare the input | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Generate response | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) | |
generation_kwargs = dict( | |
inputs, | |
max_new_tokens=1000, | |
temperature=0.7, | |
do_sample=True, | |
streamer=streamer, | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
return streamer | |
def chat_with_model_gradio(message, history, session_id): | |
system_message = f"λμ μ΄λ¦μ ChatMBTI. μ¬λλ€μ MBTIμ νμ μλ§μ μλ΄μ μ§νν μ μμ΄. μλλ°©μ MBTI μ νμ λ¨Όμ λ¬Όμ΄λ³΄κ³ , κ·Έ μ νμ μλ§κ² μλ΄μ μ§νν΄μ€. μ°Έκ³ λ‘ νμ¬ μκ°μ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}μ΄μΌ." | |
messages = [ | |
# {"role": "system", "content": f"λμ μ΄λ¦μ ChatMBTI. μ¬λλ€μ MBTIμ νμ μλ§μ μλ΄μ μ§νν μ μμ΄. μλλ°©μ MBTI μ νμ λ¨Όμ λ¬Όμ΄λ³΄κ³ , κ·Έ μ νμ μλ§κ² μλ΄μ μ§νν΄μ€. μ°Έκ³ λ‘ νμ¬ μκ°μ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}μ΄μΌ."}, | |
{"role": "user", "content": system_message}, | |
{"role": "assistant", "content": "μλ νμΈμ? ChatMBTIμ λλ€. μ€λ ν루 μ΄λ μ ¨λμ?"}, | |
] | |
messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for i, (m, _) in enumerate(history)]) | |
messages.append({"role": "user", "content": message}) | |
streamer = chat_with_model(messages) | |
partial_message = "" | |
for new_token in streamer: | |
partial_message += new_token | |
yield "", history + [(message, partial_message)] | |
def main(): | |
session_id = str(uuid.uuid4()) | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(label="ChatMBTI") | |
msg = gr.Textbox(label="λ©μμ§λ₯Ό μ λ ₯νμΈμ") | |
clear = gr.Button("λν μ΄κΈ°ν") | |
msg.submit(chat_with_model_gradio, [msg, chatbot, gr.State(session_id)], [msg, chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue() | |
demo.launch() | |
if __name__ == "__main__": | |
main() | |