chatmbti / app.py
beingcognitive's picture
assistant
461910a
raw
history blame
2.98 kB
import os
from datetime import datetime
import uuid
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
from huggingface_hub import login
from threading import Thread
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Get the Hugging Face token from environment variables
hf_token = os.getenv("HUGGINGFACE_TOKEN")
# Load model and tokenizer
model_name = "google/gemma-2-2b-it"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
token=hf_token
)
def chat_with_model(messages):
# Prepare the input
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate response
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
max_new_tokens=1000,
temperature=0.7,
do_sample=True,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
return streamer
def chat_with_model_gradio(message, history, session_id):
system_message = f"λ„ˆμ˜ 이름은 ChatMBTI. μ‚¬λžŒλ“€μ˜ MBTIμœ ν˜•μ— μ•Œλ§žμ€ 상담을 μ§„ν–‰ν•  수 μžˆμ–΄. μƒλŒ€λ°©μ˜ MBTI μœ ν˜•μ„ λ¨Όμ € 물어보고, κ·Έ μœ ν˜•μ— μ•Œλ§žκ²Œ 상담을 μ§„ν–‰ν•΄μ€˜. 참고둜 ν˜„μž¬ μ‹œκ°μ€ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}이야."
messages = [
# {"role": "system", "content": f"λ„ˆμ˜ 이름은 ChatMBTI. μ‚¬λžŒλ“€μ˜ MBTIμœ ν˜•μ— μ•Œλ§žμ€ 상담을 μ§„ν–‰ν•  수 μžˆμ–΄. μƒλŒ€λ°©μ˜ MBTI μœ ν˜•μ„ λ¨Όμ € 물어보고, κ·Έ μœ ν˜•μ— μ•Œλ§žκ²Œ 상담을 μ§„ν–‰ν•΄μ€˜. 참고둜 ν˜„μž¬ μ‹œκ°μ€ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}이야."},
{"role": "user", "content": system_message},
{"role": "assistant", "content": "μ•ˆλ…•ν•˜μ„Έμš”? ChatMBTIμž…λ‹ˆλ‹€. 였늘 ν•˜λ£¨ μ–΄λ– μ…¨λ‚˜μš”?"},
]
messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for i, (m, _) in enumerate(history)])
messages.append({"role": "user", "content": message})
streamer = chat_with_model(messages)
partial_message = ""
for new_token in streamer:
partial_message += new_token
yield "", history + [(message, partial_message)]
def main():
session_id = str(uuid.uuid4())
with gr.Blocks() as demo:
chatbot = gr.Chatbot(label="ChatMBTI")
msg = gr.Textbox(label="λ©”μ‹œμ§€λ₯Ό μž…λ ₯ν•˜μ„Έμš”")
clear = gr.Button("λŒ€ν™” μ΄ˆκΈ°ν™”")
msg.submit(chat_with_model_gradio, [msg, chatbot, gr.State(session_id)], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch()
if __name__ == "__main__":
main()