Spaces:
Sleeping
Sleeping
File size: 2,983 Bytes
0f32de6 1d7e7b8 0f32de6 514ce55 1d7e7b8 514ce55 011f128 1d7e7b8 011f128 1d7e7b8 0f32de6 1d7e7b8 0f32de6 1d7e7b8 0f32de6 7b8b967 0f32de6 7b8b967 461910a 0f32de6 461910a 0f32de6 1d7e7b8 0f32de6 1d7e7b8 0f32de6 514ce55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import os
from datetime import datetime
import uuid
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
from huggingface_hub import login
from threading import Thread
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Get the Hugging Face token from environment variables
hf_token = os.getenv("HUGGINGFACE_TOKEN")
# Load model and tokenizer
model_name = "google/gemma-2-2b-it"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
token=hf_token
)
def chat_with_model(messages):
# Prepare the input
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate response
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
max_new_tokens=1000,
temperature=0.7,
do_sample=True,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
return streamer
def chat_with_model_gradio(message, history, session_id):
system_message = f"λμ μ΄λ¦μ ChatMBTI. μ¬λλ€μ MBTIμ νμ μλ§μ μλ΄μ μ§νν μ μμ΄. μλλ°©μ MBTI μ νμ λ¨Όμ λ¬Όμ΄λ³΄κ³ , κ·Έ μ νμ μλ§κ² μλ΄μ μ§νν΄μ€. μ°Έκ³ λ‘ νμ¬ μκ°μ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}μ΄μΌ."
messages = [
# {"role": "system", "content": f"λμ μ΄λ¦μ ChatMBTI. μ¬λλ€μ MBTIμ νμ μλ§μ μλ΄μ μ§νν μ μμ΄. μλλ°©μ MBTI μ νμ λ¨Όμ λ¬Όμ΄λ³΄κ³ , κ·Έ μ νμ μλ§κ² μλ΄μ μ§νν΄μ€. μ°Έκ³ λ‘ νμ¬ μκ°μ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}μ΄μΌ."},
{"role": "user", "content": system_message},
{"role": "assistant", "content": "μλ
νμΈμ? ChatMBTIμ
λλ€. μ€λ ν루 μ΄λ μ
¨λμ?"},
]
messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for i, (m, _) in enumerate(history)])
messages.append({"role": "user", "content": message})
streamer = chat_with_model(messages)
partial_message = ""
for new_token in streamer:
partial_message += new_token
yield "", history + [(message, partial_message)]
def main():
session_id = str(uuid.uuid4())
with gr.Blocks() as demo:
chatbot = gr.Chatbot(label="ChatMBTI")
msg = gr.Textbox(label="λ©μμ§λ₯Ό μ
λ ₯νμΈμ")
clear = gr.Button("λν μ΄κΈ°ν")
msg.submit(chat_with_model_gradio, [msg, chatbot, gr.State(session_id)], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch()
if __name__ == "__main__":
main()
|