File size: 5,932 Bytes
5f42812
 
 
 
0820857
 
 
 
5f42812
 
 
426a08c
 
 
 
 
 
 
0820857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426a08c
 
5f42812
 
 
 
 
 
 
 
 
24c2f62
5f42812
 
24c2f62
f5765c8
5f42812
 
 
11484b5
b75046f
24c2f62
5f42812
0820857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24c2f62
0820857
 
 
 
 
5f42812
0820857
 
9a80e6e
 
 
d200533
0820857
9a80e6e
 
0820857
 
9a80e6e
 
 
 
0820857
 
 
 
 
 
 
9a80e6e
0820857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a80e6e
 
0820857
 
 
5f42812
0820857
5f42812
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict
import logging
import os
import subprocess
import json
import tempfile

logger = logging.getLogger(__name__)

def _grab_best_device(use_gpu=True):
    if torch.cuda.device_count() > 0 and use_gpu:
        device = "cuda"
    else:
        device = "cpu"
    return device

def get_video_duration_seconds(video_path: str) -> float:
    """Use ffprobe to get video duration in seconds."""
    cmd = [
        "ffprobe",
        "-v", "quiet",
        "-print_format", "json",
        "-show_format",
        video_path
    ]
    result = subprocess.run(cmd, capture_output=True, text=True)
    info = json.loads(result.stdout)
    return float(info["format"]["duration"])

def format_duration(seconds: int) -> str:
    minutes = seconds // 60
    secs = seconds % 60
    return f"{minutes:02d}:{secs:02d}"

DEVICE = _grab_best_device()

logger.info(f"Using device: {DEVICE}")

class VideoAnalyzer:
    def __init__(self):
        if not torch.cuda.is_available():
            raise RuntimeError("CUDA is required but not available!")
            
        logger.info("Initializing VideoAnalyzer")
        self.model_path = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
        logger.info(f"Loading model from {self.model_path} - Using device: {DEVICE}")
        
        # Load processor and model
        self.processor = AutoProcessor.from_pretrained(self.model_path)

        self.model = AutoModelForImageTextToText.from_pretrained(
            self.model_path,
            torch_dtype=torch.bfloat16,
            _attn_implementation="flash_attention_2"
        ).to(DEVICE)
        logger.info(f"Model loaded on device: {self.model.device}")
        
    def analyze_segment(self, video_path: str, start_time: float) -> str:
        """Analyze a single video segment."""
        messages = [
            {
                "role": "system",
                "content": [{"type": "text", "text": """You are a detailed video analysis assistant with expertise in scene description. Your task is to:
1. Describe the visual content with precise details
2. Note any significant actions or movements
3. Describe important objects, people, or elements in the scene
4. Capture the mood, atmosphere, or emotional content if present
5. Mention any scene transitions or camera movements
Be specific and thorough, but focus only on what is visually present in this segment."""}]
            },
            {
                "role": "user",
                "content": [
                    {"type": "video", "path": video_path},
                    {"type": "text", "text": """Describe this video segment in detail. Focus on:
- What objects, people, or elements are visible?
- What actions or movements are occurring?
- What is the setting or environment?
- Are there any notable visual effects or transitions?
- What is the overall mood or atmosphere?
Be specific about visual details but stay concise."""}
                ]
            }
        ]
        
        inputs = self.processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(DEVICE, dtype=torch.bfloat16)
        
        outputs = self.model.generate(
            **inputs,
            do_sample=True,
            temperature=0.7,
            max_new_tokens=256
        )
        return self.processor.batch_decode(outputs, skip_special_tokens=True)[0].split("Assistant: ")[-1]

    def process_video(self, video_path: str, segment_length: int = 10) -> List[Dict]:
        try:
            # Create temp directory for segments
            temp_dir = tempfile.mkdtemp()
            segments_info = []
            
            # Get video duration
            duration = get_video_duration_seconds(video_path)
            segments_processed = 0
            total_segments = int(duration / segment_length)
            logger.info(f"Processing {total_segments} segments for video of length {duration:.2f} seconds")
            
            # Process video in segments
            for segment_idx in range(total_segments):
                start_time = segment_idx * segment_length
                end_time = min(start_time + segment_length, duration)
                
                # Skip if we've reached the end
                if start_time >= duration:
                    break
                
                # Create segment
                segment_path = os.path.join(temp_dir, f"segment_{start_time}.mp4")
                cmd = [
                    "ffmpeg",
                    "-y",
                    "-i", video_path,
                    "-ss", str(start_time),
                    "-t", str(end_time - start_time),  # Duration of this segment
                    "-c:v", "libx264",
                    "-preset", "ultrafast",
                    "-pix_fmt", "yuv420p",
                    segment_path
                ]
                subprocess.run(cmd, check=True)
                
                # Analyze segment
                description = self.analyze_segment(segment_path, start_time)
                
                # Add segment info with timestamp
                segments_info.append({
                    "timestamp": format_duration(start_time),
                    "description": description
                })
                
                # Clean up segment file
                os.remove(segment_path)
                
                logger.info(f"Processed segment {segment_idx + 1}/{total_segments} ({start_time}-{end_time}s)")
            
            # Clean up temp directory
            os.rmdir(temp_dir)
            
            return segments_info
            
        except Exception as e:
            logger.error(f"Error processing video: {str(e)}", exc_info=True)
            raise