Spaces:
Running
Running
File size: 13,797 Bytes
7fd0353 25bd1c6 7fd0353 e7655ad 7fd0353 aacdd5b f711016 c6817ce f711016 25bd1c6 f711016 25bd1c6 df749c9 a9b6d73 2b9bb53 f711016 2b9bb53 0efe118 f711016 25bd1c6 f711016 7fd0353 25bd1c6 e7655ad 25bd1c6 e7655ad 7fd0353 25bd1c6 7fd0353 25bd1c6 7fd0353 e76bbe1 7fd0353 25bd1c6 65e1914 25bd1c6 65e1914 25bd1c6 7fd0353 65e1914 7fd0353 65e1914 4ed6221 65e1914 4ed6221 7fd0353 25bd1c6 7fd0353 eb95b12 7fd0353 e7655ad 25bd1c6 e7655ad 25bd1c6 e7655ad 25bd1c6 e7655ad a807e9e 25bd1c6 be87c08 25bd1c6 04e4550 f711016 e7655ad 7fd0353 25bd1c6 e76bbe1 25bd1c6 e76bbe1 25bd1c6 565857a a10f390 25bd1c6 d5853ad 25bd1c6 565857a 3e265d0 5c5808a 25bd1c6 562211b 25bd1c6 3b77557 25bd1c6 435cc84 565857a 25bd1c6 9a74dea 25bd1c6 01f0881 25bd1c6 01f0881 25bd1c6 7fd0353 e7655ad 7fd0353 25bd1c6 7fd0353 f711016 1bed31e f5d0fca 05eca7a 25bd1c6 05eca7a 25bd1c6 f1429ea e7655ad 25bd1c6 e7655ad 25bd1c6 e7655ad 7fd0353 ada1283 009fc5c e7655ad 009fc5c e7655ad 009fc5c e7655ad 009fc5c e7655ad 009fc5c e7655ad 009fc5c 7fd0353 25bd1c6 7fd0353 25bd1c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import io
import re
import wave
import struct
import os
import time
import json
import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, Response, HTMLResponse
from fastapi.middleware import Middleware
from fastapi.middleware.gzip import GZipMiddleware
from misaki import en, espeak
from onnxruntime import InferenceSession
from huggingface_hub import snapshot_download
from scipy.io.wavfile import write as write_wav
# ------------------------------------------------------------------------------
# Load configuration and set up vocabulary
# ------------------------------------------------------------------------------
config_file_path = 'config.json' # Update with your actual path
with open(config_file_path, 'r') as f:
config = json.load(f)
phoneme_vocab = config['vocab']
# ------------------------------------------------------------------------------
# Download the model and voice files from Hugging Face Hub
# ------------------------------------------------------------------------------
model_repo = "onnx-community/Kokoro-82M-v1.0-ONNX"
model_name = "onnx/model_q4.onnx" # "onnx/model.onnx"
voice_file_pattern = "*.bin"
local_dir = "."
snapshot_download(
repo_id=model_repo,
allow_patterns=[model_name, voice_file_pattern],
local_dir=local_dir
)
# ------------------------------------------------------------------------------
# Load the ONNX model
# ------------------------------------------------------------------------------
model_path = os.path.join(local_dir, model_name)
sess = InferenceSession(model_path)
# ------------------------------------------------------------------------------
# Create the FastAPI app with GZip compression
# ------------------------------------------------------------------------------
app = FastAPI(
title="Kokoro TTS FastAPI",
middleware=[Middleware(GZipMiddleware, compresslevel=9)]
)
# ------------------------------------------------------------------------------
# Helper Functions
# ------------------------------------------------------------------------------
def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
"""
Generate a WAV header for streaming. Since we do not know the final audio size,
a large dummy value is used for the data chunk size.
"""
bits_per_sample = sample_width * 8
byte_rate = sample_rate * num_channels * sample_width
block_align = num_channels * sample_width
total_size = 36 + data_size # 36 + data_size (header is 44 bytes total)
header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
data_chunk_header = struct.pack('<4sI', b'data', data_size)
return header + fmt_chunk + data_chunk_header
stream_header = generate_wav_header(24000, 1, 2)
def custom_split_text(text: str) -> list:
"""
Custom splitting strategy:
- Start with a chunk size of 2 words.
- For each chunk, if a period (".") is found in any word (except the very last word),
then split at that word (including it).
- Otherwise, use the current chunk size.
- Increase the chunk size by 2 for each subsequent chunk.
- If there are fewer than the desired number of words remaining, include all of them.
"""
words = text.split()
chunks = []
chunk_size = 2
start = 0
while start < len(words):
candidate_end = start + chunk_size
if candidate_end > len(words):
candidate_end = len(words)
chunk_words = words[start:candidate_end]
split_index = None
# for i in range(len(chunk_words) - 1):
# if '.' in chunk_words[i]:
# split_index = i
# break
# if split_index is not None:
# candidate_end = start + split_index + 1
# chunk_words = words[start:candidate_end]
chunks.append(" ".join(chunk_words))
start = candidate_end
if chunk_size < 100:
chunk_size += 2
return chunks
def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
"""
Convert a torch.FloatTensor (values in [-1, 1]) to raw 16-bit PCM bytes.
"""
audio_np = audio_tensor.cpu().numpy()
if audio_np.ndim > 1:
audio_np = audio_np.flatten()
audio_int16 = np.int16(audio_np * 32767)
return audio_int16.tobytes()
def audio_tensor_to_opus_bytes(audio_tensor: torch.Tensor, sample_rate: int = 24000, bitrate: int = 32000) -> bytes:
"""
Convert a torch.FloatTensor to Opus-encoded bytes.
Requires the 'opuslib' package: pip install opuslib
"""
try:
import opuslib
except ImportError:
raise ImportError("opuslib is not installed. Please install it with: pip install opuslib")
audio_np = audio_tensor.cpu().numpy()
if audio_np.ndim > 1:
audio_np = audio_np.flatten()
audio_int16 = np.int16(audio_np * 32767)
encoder = opuslib.Encoder(sample_rate, 1, opuslib.APPLICATION_VOIP)
frame_size = int(sample_rate * 0.020) # 20 ms frame
encoded_data = b''
for i in range(0, len(audio_int16), frame_size):
frame = audio_int16[i:i + frame_size]
if len(frame) < frame_size:
frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
encoded_frame = encoder.encode(frame.tobytes(), frame_size)
encoded_data += encoded_frame
return encoded_data
fbs = espeak.EspeakFallback(british=True)
g2p = en.G2P(trf=False, british=False, fallback=fbs)
def tokenizer(text: str):
"""
Converts text to a list of phoneme tokens using the global vocabulary.
"""
phonemes_string, tokens = g2p(text)
phonemes = [ph for ph in phonemes_string]
print(text + " " + phonemes_string)
tokens = [phoneme_vocab[phoneme] for phoneme in phonemes if phoneme in phoneme_vocab]
return tokens
# ------------------------------------------------------------------------------
# Endpoints
# ------------------------------------------------------------------------------
@app.get("/tts/streaming", summary="Streaming TTS")
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "wav"):
"""
Streaming TTS endpoint.
This endpoint splits the input text into chunks (using the doubling strategy),
then for each chunk:
- For the first chunk, a 0 is prepended.
- For subsequent chunks, the first token is set to the last token from the previous chunk.
- For the final chunk, a 0 is appended.
The audio for each chunk is generated immediately and streamed to the client.
"""
chunks = custom_split_text(text)
# Load the voice/style file (must be present in voices/{voice}.bin)
voice_path = os.path.join(local_dir, f"voices/{voice}.bin")
if not os.path.exists(voice_path):
raise HTTPException(status_code=404, detail="Voice file not found")
voices = np.fromfile(voice_path, dtype=np.float32).reshape(-1, 1, 256)
def audio_generator():
# If outputting a WAV stream, yield a WAV header once.
if format.lower() == "wav":
yield stream_header
prev_last_token = None
for i, chunk in enumerate(chunks):
# Convert the chunk text to tokens.
chunk_tokens = tokenizer(chunk)
# For the first chunk, prepend 0; for later chunks, start with the previous chunk's last token.
# if i == 0:
# tokens_to_send = [0] + chunk_tokens + [0]
# else:
# tokens_to_send = [0] + chunk_tokens + [0]
# token_to_send = [0] + chunk_tokens
# Save the last token of this chunk for the next iteration.
prev_last_token = chunk_tokens[-1:]
# Prepare the model input (a batch of one sequence).
tokens_to_send = [0] + chunk_tokens + [0]
final_token = [tokens_to_send]
print(final_token)
# Use the number of tokens to select the appropriate style vector.
style_index = len(chunk_tokens) + 2
if style_index >= len(voices):
style_index = len(voices) - 1 # Fallback if index is out-of-bounds.
ref_s = voices[style_index]
# Prepare the speed parameter.
speed_param = np.ones(1, dtype=np.float32) * speed
# Run the model (ONNX inference) for this chunk.
try:
start_time = time.time()
audio_output = sess.run(None, {
"input_ids": final_token,
"style": ref_s,
"speed": speed_param,
})[0]
print(f"Chunk {i} inference time: {time.time() - start_time:.3f}s")
except Exception as e:
print(f"Error processing chunk {i}: {e}")
# In case of error, generate a short silent chunk.
audio_output = np.zeros((24000,), dtype=np.float32)
# Convert the model output (assumed to be float32 in [-1, 1]) to int16 PCM.
audio_int16 = (audio_output * 32767).astype(np.int16).flatten()[6000:-3000]
print(audio_int16)
# Convert to a torch tensor (back into float range) for our helper functions.
# audio_tensor = torch.from_numpy(audio_int16.astype(np.float32) / 32767)
# Yield the encoded audio chunk.
yield audio_int16.tobytes()
media_type = "audio/wav"
return StreamingResponse(
audio_generator(),
media_type=media_type,
headers={"Cache-Control": "no-cache"},
)
@app.get("/tts/full", summary="Full TTS")
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "wav"):
"""
Full TTS endpoint that synthesizes the entire text and returns a complete WAV or Opus file.
"""
voice_path = os.path.join(local_dir, f"voices/{voice}.bin")
voices = np.fromfile(voice_path, dtype=np.float32).reshape(-1, 1, 256)
tokens = tokenizer(text)
ref_s = voices[len(tokens)]
final_token = [[0, *tokens, 0]]
start_time = time.time()
audio = sess.run(None, {
"input_ids": final_token,
"style": ref_s,
"speed": np.ones(1, dtype=np.float32) * speed,
})[0]
print(f"Full TTS inference time: {time.time()-start_time:.3f}s")
# Convert to int16 PCM.
audio = (audio * 32767).astype(np.int16).flatten()
if format.lower() == "wav":
wav_io = io.BytesIO()
write_wav(wav_io, 24000, audio)
wav_io.seek(0)
return Response(content=wav_io.read(), media_type="audio/wav")
elif format.lower() == "opus":
opus_data = audio_tensor_to_opus_bytes(torch.from_numpy(audio.astype(np.float32)/32767), sample_rate=24000)
return Response(content=opus_data, media_type="audio/opus")
else:
raise HTTPException(status_code=400, detail=f"Unsupported audio format: {format}")
@app.get("/", response_class=HTMLResponse)
def index():
"""
HTML demo page for Kokoro TTS.
"""
return """
<!DOCTYPE html>
<html>
<head>
<title>Kokoro TTS Demo</title>
</head>
<body>
<h1>Kokoro TTS Demo</h1>
<textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
<label for="voice">Voice:</label>
<input type="text" id="voice" value="af_heart"><br>
<label for="speed">Speed:</label>
<input type="number" step="0.1" id="speed" value="1.0"><br>
<label for="format">Format:</label>
<select id="format">
<option value="wav">WAV</option>
<option value="opus" selected>Opus</option>
</select><br><br>
<button onclick="playStreaming()">Play Streaming TTS</button>
<button onclick="playFull()">Play Full TTS</button>
<br><br>
<audio id="audio" controls autoplay></audio>
<script>
function playStreaming() {
const text = document.getElementById('text').value;
const voice = document.getElementById('voice').value;
const speed = document.getElementById('speed').value;
const format = document.getElementById('format').value;
const audio = document.getElementById('audio');
audio.src = `/tts/streaming?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}&format=${format}`;
audio.type = format === 'wav' ? 'audio/wav' : 'audio/opus';
audio.play();
}
function playFull() {
const text = document.getElementById('text').value;
const voice = document.getElementById('voice').value;
const speed = document.getElementById('speed').value;
const format = document.getElementById('format').value;
const audio = document.getElementById('audio');
audio.src = `/tts/full?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}&format=${format}`;
audio.type = format === 'wav' ? 'audio/wav' : 'audio/opus';
audio.play();
}
</script>
</body>
</html>
"""
# ------------------------------------------------------------------------------
# Run the app with: uvicorn app:app --reload
# ------------------------------------------------------------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|