Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import re
|
3 |
+
import wave
|
4 |
+
import struct
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from fastapi import FastAPI, HTTPException
|
9 |
+
from fastapi.responses import StreamingResponse, Response, HTMLResponse
|
10 |
+
|
11 |
+
from kokoro import KPipeline
|
12 |
+
|
13 |
+
app = FastAPI(title="Kokoro TTS FastAPI")
|
14 |
+
|
15 |
+
# ------------------------------------------------------------------------------
|
16 |
+
# Global Pipeline Instance
|
17 |
+
# ------------------------------------------------------------------------------
|
18 |
+
# Create one pipeline instance for the entire app.
|
19 |
+
pipeline = KPipeline(lang_code="a")
|
20 |
+
|
21 |
+
|
22 |
+
# ------------------------------------------------------------------------------
|
23 |
+
# Helper Functions
|
24 |
+
# ------------------------------------------------------------------------------
|
25 |
+
|
26 |
+
def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
|
27 |
+
"""
|
28 |
+
Generate a WAV header for streaming.
|
29 |
+
Since we don't know the final audio size, we set the data chunk size to a large dummy value.
|
30 |
+
This header is sent only once at the start of the stream.
|
31 |
+
"""
|
32 |
+
bits_per_sample = sample_width * 8
|
33 |
+
byte_rate = sample_rate * num_channels * sample_width
|
34 |
+
block_align = num_channels * sample_width
|
35 |
+
# total file size = 36 + data_size (header is 44 bytes total)
|
36 |
+
total_size = 36 + data_size
|
37 |
+
header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
|
38 |
+
fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
|
39 |
+
data_chunk_header = struct.pack('<4sI', b'data', data_size)
|
40 |
+
return header + fmt_chunk + data_chunk_header
|
41 |
+
|
42 |
+
|
43 |
+
def custom_split_text(text: str) -> list:
|
44 |
+
"""
|
45 |
+
Custom splitting: split text into chunks where each chunk doubles in size.
|
46 |
+
"""
|
47 |
+
words = text.split()
|
48 |
+
chunks = []
|
49 |
+
chunk_size = 1
|
50 |
+
start = 0
|
51 |
+
while start < len(words):
|
52 |
+
end = start + chunk_size
|
53 |
+
chunk = " ".join(words[start:end])
|
54 |
+
chunks.append(chunk)
|
55 |
+
start = end
|
56 |
+
chunk_size *= 2 # double the chunk size for the next iteration
|
57 |
+
return chunks
|
58 |
+
|
59 |
+
|
60 |
+
def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
|
61 |
+
"""
|
62 |
+
Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
|
63 |
+
"""
|
64 |
+
# Ensure tensor is on CPU and flatten if necessary.
|
65 |
+
audio_np = audio_tensor.cpu().numpy()
|
66 |
+
if audio_np.ndim > 1:
|
67 |
+
audio_np = audio_np.flatten()
|
68 |
+
# Scale to int16 range.
|
69 |
+
audio_int16 = np.int16(audio_np * 32767)
|
70 |
+
return audio_int16.tobytes()
|
71 |
+
|
72 |
+
|
73 |
+
# ------------------------------------------------------------------------------
|
74 |
+
# Endpoints
|
75 |
+
# ------------------------------------------------------------------------------
|
76 |
+
|
77 |
+
@app.get("/tts/streaming", summary="Streaming TTS")
|
78 |
+
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0):
|
79 |
+
"""
|
80 |
+
Streaming TTS endpoint that returns a continuous WAV stream.
|
81 |
+
|
82 |
+
The endpoint first yields a WAV header (with a dummy length) then yields raw PCM data
|
83 |
+
for each text chunk as soon as it is generated.
|
84 |
+
"""
|
85 |
+
# Split the input text using the custom doubling strategy.
|
86 |
+
chunks = custom_split_text(text)
|
87 |
+
sample_rate = 24000
|
88 |
+
num_channels = 1
|
89 |
+
sample_width = 2 # 16-bit PCM
|
90 |
+
|
91 |
+
def audio_generator():
|
92 |
+
# Yield the WAV header first.
|
93 |
+
header = generate_wav_header(sample_rate, num_channels, sample_width)
|
94 |
+
yield header
|
95 |
+
# Process and yield each chunk's PCM data.
|
96 |
+
for i, chunk in enumerate(chunks):
|
97 |
+
print(f"Processing chunk {i}: {chunk}") # Debugging
|
98 |
+
try:
|
99 |
+
results = list(pipeline(chunk, voice=voice, speed=speed, split_pattern=None))
|
100 |
+
for result in results:
|
101 |
+
if result.audio is not None:
|
102 |
+
print(f"Chunk {i}: Audio generated") # Debugging
|
103 |
+
pcm_bytes = audio_tensor_to_pcm_bytes(result.audio)
|
104 |
+
yield pcm_bytes
|
105 |
+
else:
|
106 |
+
print(f"Chunk {i}: No audio generated")
|
107 |
+
except Exception as e:
|
108 |
+
print(f"Error processing chunk {i}: {e}")
|
109 |
+
|
110 |
+
return StreamingResponse(
|
111 |
+
audio_generator(),
|
112 |
+
media_type="audio/wav",
|
113 |
+
headers={"Cache-Control": "no-cache"},
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
@app.get("/tts/full", summary="Full TTS")
|
118 |
+
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0):
|
119 |
+
"""
|
120 |
+
Full TTS endpoint that synthesizes the entire text, concatenates the audio,
|
121 |
+
and returns a complete WAV file.
|
122 |
+
"""
|
123 |
+
# Use newline-based splitting via the pipeline's split_pattern.
|
124 |
+
results = list(pipeline(text, voice=voice, speed=speed, split_pattern=r"\n+"))
|
125 |
+
audio_segments = []
|
126 |
+
for result in results:
|
127 |
+
if result.audio is not None:
|
128 |
+
audio_np = result.audio.cpu().numpy()
|
129 |
+
if audio_np.ndim > 1:
|
130 |
+
audio_np = audio_np.flatten()
|
131 |
+
audio_segments.append(audio_np)
|
132 |
+
|
133 |
+
if not audio_segments:
|
134 |
+
raise HTTPException(status_code=500, detail="No audio generated.")
|
135 |
+
|
136 |
+
# Concatenate all audio segments.
|
137 |
+
full_audio = np.concatenate(audio_segments)
|
138 |
+
|
139 |
+
# Write the concatenated audio to an in-memory WAV file.
|
140 |
+
sample_rate = 24000
|
141 |
+
num_channels = 1
|
142 |
+
sample_width = 2 # 16-bit PCM -> 2 bytes per sample
|
143 |
+
wav_io = io.BytesIO()
|
144 |
+
with wave.open(wav_io, "wb") as wav_file:
|
145 |
+
wav_file.setnchannels(num_channels)
|
146 |
+
wav_file.setsampwidth(sample_width)
|
147 |
+
wav_file.setframerate(sample_rate)
|
148 |
+
full_audio_int16 = np.int16(full_audio * 32767)
|
149 |
+
wav_file.writeframes(full_audio_int16.tobytes())
|
150 |
+
wav_io.seek(0)
|
151 |
+
return Response(content=wav_io.read(), media_type="audio/wav")
|
152 |
+
|
153 |
+
|
154 |
+
@app.get("/", response_class=HTMLResponse)
|
155 |
+
def index():
|
156 |
+
"""
|
157 |
+
HTML demo page for Kokoro TTS.
|
158 |
+
|
159 |
+
This page provides a simple UI to enter text, choose a voice and speed,
|
160 |
+
and play synthesized audio from both the streaming and full endpoints.
|
161 |
+
"""
|
162 |
+
return """
|
163 |
+
<!DOCTYPE html>
|
164 |
+
<html>
|
165 |
+
<head>
|
166 |
+
<title>Kokoro TTS Demo</title>
|
167 |
+
</head>
|
168 |
+
<body>
|
169 |
+
<h1>Kokoro TTS Demo</h1>
|
170 |
+
<textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
|
171 |
+
<label for="voice">Voice:</label>
|
172 |
+
<input type="text" id="voice" value="af_heart"><br>
|
173 |
+
<label for="speed">Speed:</label>
|
174 |
+
<input type="number" step="0.1" id="speed" value="1.0"><br><br>
|
175 |
+
<button onclick="playStreaming()">Play Streaming TTS</button>
|
176 |
+
<button onclick="playFull()">Play Full TTS</button>
|
177 |
+
<br><br>
|
178 |
+
<audio id="audio" controls autoplay></audio>
|
179 |
+
<script>
|
180 |
+
function playStreaming() {
|
181 |
+
const text = document.getElementById('text').value;
|
182 |
+
const voice = document.getElementById('voice').value;
|
183 |
+
const speed = document.getElementById('speed').value;
|
184 |
+
const audio = document.getElementById('audio');
|
185 |
+
// Set the audio element's source to the streaming endpoint.
|
186 |
+
audio.src = `/tts/streaming?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
|
187 |
+
audio.play();
|
188 |
+
}
|
189 |
+
function playFull() {
|
190 |
+
const text = document.getElementById('text').value;
|
191 |
+
const voice = document.getElementById('voice').value;
|
192 |
+
const speed = document.getElementById('speed').value;
|
193 |
+
const audio = document.getElementById('audio');
|
194 |
+
// Set the audio element's source to the full TTS endpoint.
|
195 |
+
audio.src = `/tts/full?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
|
196 |
+
audio.play();
|
197 |
+
}
|
198 |
+
</script>
|
199 |
+
</body>
|
200 |
+
</html>
|
201 |
+
"""
|
202 |
+
|
203 |
+
|
204 |
+
# ------------------------------------------------------------------------------
|
205 |
+
# Run with: uvicorn app:app --reload
|
206 |
+
# ------------------------------------------------------------------------------
|
207 |
+
if __name__ == "__main__":
|
208 |
+
import uvicorn
|
209 |
+
|
210 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|