File size: 11,988 Bytes
7fd0353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363625a
7fd0353
 
 
 
 
 
 
 
363625a
 
 
 
 
 
 
7fd0353
 
 
b60527b
7fd0353
 
363625a
 
 
 
 
 
 
 
 
 
3ab2b52
363625a
 
 
 
 
 
 
7fd0353
 
 
 
 
363625a
7fd0353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363625a
7fd0353
 
 
 
363625a
 
7fd0353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363625a
7fd0353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363625a
 
 
 
 
7fd0353
3ab2b52
363625a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd0353
363625a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd0353
363625a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd0353
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import io
import re
import wave
import struct

import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, Response, HTMLResponse

from kokoro import KPipeline

app = FastAPI(title="Kokoro TTS FastAPI")

# ------------------------------------------------------------------------------
# Global Pipeline Instance
# ------------------------------------------------------------------------------
pipeline = KPipeline(lang_code="a")


# ------------------------------------------------------------------------------
# Helper Functions
# ------------------------------------------------------------------------------

def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
    """
    Generate a WAV header for streaming.
    Since we don't know the final audio size, we set the data chunk size to a large dummy value.
    """
    bits_per_sample = sample_width * 8
    byte_rate = sample_rate * num_channels * sample_width
    block_align = num_channels * sample_width
    total_size = 36 + data_size  # header (44 bytes) minus 8 + dummy data size
    header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
    fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
    data_chunk_header = struct.pack('<4sI', b'data', data_size)
    return header + fmt_chunk + data_chunk_header


def custom_split_text(text: str) -> list:
    """
    Custom splitting:
      - Start with a chunk size of 2 words.
      - For each chunk, if a period (".") is found in any word (except if it’s the very last word),
        then split the chunk at that word (i.e. include words up to and including that word).
      - Otherwise, use the current chunk size.
      - For subsequent chunks, increase the chunk size by 2 (i.e. 2, 4, 6, …).
      - If there are fewer than the desired number of words for a full chunk, add all remaining words.
    """
    words = text.split()
    chunks = []
    chunk_size = 2
    start = 0
    while start < len(words):
        candidate_end = start + chunk_size
        if candidate_end > len(words):
            candidate_end = len(words)
        chunk_words = words[start:candidate_end]
        # Look for a period in the chunk (from right to left)
        split_index = None
        for i in reversed(range(len(chunk_words))):
            if '.' in chunk_words[i]:
                split_index = i
                break
        if split_index is not None and split_index != len(chunk_words) - 1:
            # If a period is found and it’s not the last word in the chunk,
            # adjust the chunk so it ends at that word.
            candidate_end = start + split_index + 1
            chunk_words = words[start:candidate_end]
        chunks.append(" ".join(chunk_words))
        start = candidate_end
        chunk_size += 2  # Increase by 2 (added, not multiplied)
    return chunks


def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
    """
    Convert a torch.FloatTensor (with values assumed in [-1, 1]) to raw 16-bit PCM bytes.
    """
    audio_np = audio_tensor.cpu().numpy()
    if audio_np.ndim > 1:
        audio_np = audio_np.flatten()
    audio_int16 = np.int16(audio_np * 32767)
    return audio_int16.tobytes()


# ------------------------------------------------------------------------------
# Endpoints
# ------------------------------------------------------------------------------

@app.get("/tts/streaming", summary="Streaming TTS")
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0):
    """
    Streaming TTS endpoint that returns a continuous WAV stream.
    
    The endpoint first yields a WAV header (with a dummy length) then yields raw PCM data
    for each text chunk as soon as it is generated.
    """
    chunks = custom_split_text(text)
    sample_rate = 24000
    num_channels = 1
    sample_width = 2  # 16-bit PCM

    def audio_generator():
        # Yield the WAV header first.
        header = generate_wav_header(sample_rate, num_channels, sample_width)
        yield header
        # Process and yield each chunk's PCM data.
        for i, chunk in enumerate(chunks):
            print(f"Processing chunk {i}: {chunk}")
            try:
                results = list(pipeline(chunk, voice=voice, speed=speed, split_pattern=None))
                for result in results:
                    if result.audio is not None:
                        print(f"Chunk {i}: Audio generated")
                        yield audio_tensor_to_pcm_bytes(result.audio)
                    else:
                        print(f"Chunk {i}: No audio generated")
            except Exception as e:
                print(f"Error processing chunk {i}: {e}")
    return StreamingResponse(
        audio_generator(),
        media_type="audio/wav",
        headers={"Cache-Control": "no-cache"},
    )


@app.get("/tts/full", summary="Full TTS")
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0):
    """
    Full TTS endpoint that synthesizes the entire text, concatenates the audio,
    and returns a complete WAV file.
    """
    results = list(pipeline(text, voice=voice, speed=speed, split_pattern=r"\n+"))
    audio_segments = []
    for result in results:
        if result.audio is not None:
            audio_np = result.audio.cpu().numpy()
            if audio_np.ndim > 1:
                audio_np = audio_np.flatten()
            audio_segments.append(audio_np)

    if not audio_segments:
        raise HTTPException(status_code=500, detail="No audio generated.")

    full_audio = np.concatenate(audio_segments)

    sample_rate = 24000
    num_channels = 1
    sample_width = 2  # 16-bit PCM
    wav_io = io.BytesIO()
    with wave.open(wav_io, "wb") as wav_file:
        wav_file.setnchannels(num_channels)
        wav_file.setsampwidth(sample_width)
        wav_file.setframerate(sample_rate)
        full_audio_int16 = np.int16(full_audio * 32767)
        wav_file.writeframes(full_audio_int16.tobytes())
    wav_io.seek(0)
    return Response(content=wav_io.read(), media_type="audio/wav")


@app.get("/", response_class=HTMLResponse)
def index():
    """
    HTML demo page for Kokoro TTS.
    
    Two playback methods are provided:
      - "Play Full TTS" uses a standard <audio> element.
      - "Play Streaming TTS" uses the Web Audio API (via a ScriptProcessorNode) to stream
         the raw PCM data as it arrives. This method first reads the WAV header (44 bytes)
         then continuously pulls in PCM data, converts it to Float32, and plays it.
    """
    return r"""
<!DOCTYPE html>
<html>
<head>
    <title>Kokoro TTS Demo</title>
</head>
<body>
    <h1>Kokoro TTS Demo</h1>
    <textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
    <label for="voice">Voice:</label>
    <input type="text" id="voice" value="af_heart"><br>
    <label for="speed">Speed:</label>
    <input type="number" step="0.1" id="speed" value="1.0"><br><br>
    <button onclick="startStreaming()">Play Streaming TTS (Web Audio API)</button>
    <button onclick="playFull()">Play Full TTS (Standard Audio)</button>
    <br><br>
    <audio id="fullAudio" controls></audio>
    <script>
    // Function to play full TTS by simply setting the <audio> element's source.
    function playFull() {
        const text = document.getElementById('text').value;
        const voice = document.getElementById('voice').value;
        const speed = document.getElementById('speed').value;
        const audio = document.getElementById('fullAudio');
        audio.src = `/tts/full?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
        audio.play();
    }

    // Function to stream audio using the Web Audio API.
    async function startStreaming() {
        const text = document.getElementById('text').value;
        const voice = document.getElementById('voice').value;
        const speed = document.getElementById('speed').value;
        const response = await fetch(`/tts/streaming?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`);
        if (!response.body) {
            alert("Streaming not supported in this browser.");
            return;
        }
        
        const reader = response.body.getReader();
        const audioContext = new (window.AudioContext || window.webkitAudioContext)();
        // Create a ScriptProcessorNode (buffer size of 4096 samples)
        const scriptNode = audioContext.createScriptProcessor(4096, 1, 1);
        let bufferQueue = [];
        let currentBuffer = new Float32Array(0);
        let headerRead = false;
        let headerBytes = new Uint8Array(0);

        // Helper: Convert Int16 PCM (little-endian) to Float32.
        function int16ToFloat32(buffer) {
            const len = buffer.length;
            const floatBuffer = new Float32Array(len);
            for (let i = 0; i < len; i++) {
                floatBuffer[i] = buffer[i] / 32767;
            }
            return floatBuffer;
        }
        
        scriptNode.onaudioprocess = function(e) {
            const output = e.outputBuffer.getChannelData(0);
            let offset = 0;
            while (offset < output.length) {
                if (currentBuffer.length === 0) {
                    if (bufferQueue.length > 0) {
                        currentBuffer = bufferQueue.shift();
                    } else {
                        // If no data is available, output silence.
                        for (let i = offset; i < output.length; i++) {
                            output[i] = 0;
                        }
                        break;
                    }
                }
                const needed = output.length - offset;
                const available = currentBuffer.length;
                const toCopy = Math.min(needed, available);
                output.set(currentBuffer.slice(0, toCopy), offset);
                offset += toCopy;
                if (toCopy < currentBuffer.length) {
                    currentBuffer = currentBuffer.slice(toCopy);
                } else {
                    currentBuffer = new Float32Array(0);
                }
            }
        };
        scriptNode.connect(audioContext.destination);

        // Read the response stream.
        while (true) {
            const { done, value } = await reader.read();
            if (done) break;
            let chunk = value;
            // First, accumulate the 44-byte WAV header.
            if (!headerRead) {
                let combined = new Uint8Array(headerBytes.length + chunk.length);
                combined.set(headerBytes);
                combined.set(chunk, headerBytes.length);
                if (combined.length >= 44) {
                    headerBytes = combined.slice(0, 44);
                    headerRead = true;
                    // Remove the header bytes from the chunk.
                    chunk = combined.slice(44);
                } else {
                    headerBytes = combined;
                    continue;
                }
            }
            // Make sure the chunk length is even (2 bytes per sample).
            if (chunk.length % 2 !== 0) {
                chunk = chunk.slice(0, chunk.length - 1);
            }
            const int16Buffer = new Int16Array(chunk.buffer, chunk.byteOffset, chunk.byteLength / 2);
            const floatBuffer = int16ToFloat32(int16Buffer);
            bufferQueue.push(floatBuffer);
        }
    }
    </script>
</body>
</html>
    """


# ------------------------------------------------------------------------------
# Run with: uvicorn app:app --reload
# ------------------------------------------------------------------------------
if __name__ == "__main__":
    import uvicorn
    uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)