Spaces:
Running
Running
File size: 12,895 Bytes
7fd0353 e7655ad 7fd0353 f711016 7fd0353 e7655ad 7fd0353 009fc5c f711016 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 65e1914 7fd0353 65e1914 7fd0353 65e1914 7fd0353 ada1283 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 eb95b12 7fd0353 e7655ad f711016 e7655ad 7fd0353 f711016 e7655ad f711016 7fd0353 e7655ad 7fd0353 e7655ad 7fd0353 f711016 7fd0353 e7655ad 7fd0353 ada1283 e7655ad 7fd0353 e7655ad 009fc5c 7fd0353 ada1283 009fc5c e7655ad 009fc5c e7655ad 009fc5c e7655ad 009fc5c e7655ad 009fc5c e7655ad 009fc5c 7fd0353 009fc5c e7655ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import io
import re
import wave
import struct
import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, Response, HTMLResponse
from fastapi.middleware import Middleware
from fastapi.middleware.gzip import GZipMiddleware
from misaki import en
import os
import numpy as np
from onnxruntime import InferenceSession
from huggingface_hub import snapshot_download
import json
# Load the configuration file
config_file_path = 'config.json' # Update this with the path to your config file
with open(config_file_path, 'r') as f:
config = json.load(f)
# Extract the phoneme vocabulary
phoneme_vocab = config['vocab']
# Step 3: Download the model and voice file from Hugging Face Hub
model_repo = "onnx-community/Kokoro-82M-v1.0-ONNX"
model_name = "onnx/model_q8f16.onnx"
voice_file = "voices"
local_dir = "."
# Download the model and voice file
snapshot_download(
repo_id=model_repo,
local_dir=local_dir,
allow_patterns=[model_name, voice_file],
)
# Step 4: Load the model
model_path = os.path.join(local_dir, model_name)
sess = InferenceSession(model_path)
app = FastAPI(
title="Kokoro TTS FastAPI",
middleware=[
Middleware(GZipMiddleware, compresslevel=9) # Add GZip compression
]
)
# ------------------------------------------------------------------------------
# Global Pipeline Instance
# ------------------------------------------------------------------------------
# Create one pipeline instance for the entire app.
# ------------------------------------------------------------------------------
# Helper Functions
# ------------------------------------------------------------------------------
def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
"""
Generate a WAV header for streaming.
Since we don't know the final audio size, we set the data chunk size to a large dummy value.
This header is sent only once at the start of the stream.
"""
bits_per_sample = sample_width * 8
byte_rate = sample_rate * num_channels * sample_width
block_align = num_channels * sample_width
# total file size = 36 + data_size (header is 44 bytes total)
total_size = 36 + data_size
header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
data_chunk_header = struct.pack('<4sI', b'data', data_size)
return header + fmt_chunk + data_chunk_header
def custom_split_text(text: str) -> list:
"""
Custom splitting:
- Start with a chunk size of 2 words.
- For each chunk, if a period (".") is found in any word (except if it’s the very last word),
then split the chunk at that word (include words up to that word).
- Otherwise, use the current chunk size.
- For subsequent chunks, increase the chunk size by 2.
- If there are fewer than the desired number of words for a full chunk, add all remaining words.
"""
words = text.split()
chunks = []
chunk_size = 2
start = 0
while start < len(words):
candidate_end = start + chunk_size
if candidate_end > len(words):
candidate_end = len(words)
chunk_words = words[start:candidate_end]
# Look for a period in any word except the last one.
split_index = None
for i in range(len(chunk_words) - 1):
if '.' in chunk_words[i]:
split_index = i
break
if split_index is not None:
candidate_end = start + split_index + 1
chunk_words = words[start:candidate_end]
chunks.append(" ".join(chunk_words))
start = candidate_end
chunk_size += 2 # Increase the chunk size by 2 for the next iteration.
return chunks
def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
"""
Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
"""
# Ensure tensor is on CPU and flatten if necessary.
audio_np = audio_tensor.cpu().numpy()
if audio_np.ndim > 1:
audio_np = audio_np.flatten()
# Scale to int16 range.
audio_int16 = np.int16(audio_np * 32767)
return audio_int16.tobytes()
def audio_tensor_to_opus_bytes(audio_tensor: torch.Tensor, sample_rate: int = 24000, bitrate: int = 32000) -> bytes:
"""
Convert a torch.FloatTensor to Opus encoded bytes.
Requires the 'opuslib' package: pip install opuslib
"""
try:
import opuslib
except ImportError:
raise ImportError("opuslib is not installed. Please install it with: pip install opuslib")
audio_np = audio_tensor.cpu().numpy()
if audio_np.ndim > 1:
audio_np = audio_np.flatten()
# Scale to int16 range. Important for opus.
audio_int16 = np.int16(audio_np * 32767)
encoder = opuslib.Encoder(sample_rate, 1, opuslib.APPLICATION_VOIP) # 1 channel for mono.
# Calculate the number of frames to encode. Opus frames are 2.5, 5, 10, or 20 ms long.
frame_size = int(sample_rate * 0.020) # 20ms frame size
encoded_data = b''
for i in range(0, len(audio_int16), frame_size):
frame = audio_int16[i:i + frame_size]
if len(frame) < frame_size:
# Pad the last frame with zeros if needed.
frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
encoded_frame = encoder.encode(frame.tobytes(), frame_size) # Encode the frame.
encoded_data += encoded_frame
return encoded_data
g2p = en.G2P(trf=False, british=False, fallback=None) # no transformer, American English
def tokenizer(text):
phonemes_string, _ = g2p(text)
phonemes = []
for i in phonemes_string:
phonemes.append(i)
tokens = [phoneme_vocab[phoneme] for phoneme in phonemes if phoneme in phoneme_vocab]
return tokens
# ------------------------------------------------------------------------------
# Endpoints
# ------------------------------------------------------------------------------
# @app.get("/tts/streaming", summary="Streaming TTS")
# def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "opus"):
# """
# Streaming TTS endpoint that returns a continuous audio stream.
# Supports WAV (PCM) and Opus formats. Opus offers significantly better compression.
# The endpoint first yields a WAV header (with a dummy length) for WAV,
# then yields encoded audio data for each text chunk as soon as it is generated.
# """
# # Split the input text using the custom doubling strategy.
# chunks = custom_split_text(text)
# sample_rate = 24000
# num_channels = 1
# sample_width = 2 # 16-bit PCM
# def audio_generator():
# if format.lower() == "wav":
# # Yield the WAV header first.
# header = generate_wav_header(sample_rate, num_channels, sample_width)
# yield header
# # Process and yield each chunk's audio data.
# for i, chunk in enumerate(chunks):
# print(f"Processing chunk {i}: {chunk}") # Debugging
# try:
# results = list(pipeline(chunk, voice=voice, speed=speed, split_pattern=None))
# for result in results:
# if result.audio is not None:
# if format.lower() == "wav":
# yield audio_tensor_to_pcm_bytes(result.audio)
# elif format.lower() == "opus":
# yield audio_tensor_to_opus_bytes(result.audio, sample_rate=sample_rate)
# else:
# raise ValueError(f"Unsupported audio format: {format}")
# else:
# print(f"Chunk {i}: No audio generated")
# except Exception as e:
# print(f"Error processing chunk {i}: {e}")
# yield b'' # important so that streaming continues. Consider returning an error sound.
# media_type = "audio/wav" if format.lower() == "wav" else "audio/opus"
# return StreamingResponse(
# audio_generator(),
# media_type=media_type,
# headers={"Cache-Control": "no-cache"},
# )
@app.get("/tts/full", summary="Full TTS")
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "wav"):
"""
Full TTS endpoint that synthesizes the entire text, concatenates the audio,
and returns a complete WAV or Opus file.
"""
voice_path = os.path.join(local_dir, f"voices/{voice}.bin")
voices = np.fromfile(voice_path, dtype=np.float32).reshape(-1, 1, 256)
tokens = tokenizer(text)
final_token = [[0, *tokens]]
full_audio = sess.run(None, dict(
input_ids=tokens,
style=ref_s,
speed=np.ones(1, dtype=np.float32),
))[0]
# Write the concatenated audio to an in-memory WAV or Opus file.
sample_rate = 24000
num_channels = 1
sample_width = 2 # 16-bit PCM -> 2 bytes per sample
if format.lower() == "wav":
wav_io = io.BytesIO()
with wave.open(wav_io, "wb") as wav_file:
wav_file.setnchannels(num_channels)
wav_file.setsampwidth(sample_width)
wav_file.setframerate(sample_rate)
full_audio_int16 = np.int16(full_audio * 32767)
wav_file.writeframes(full_audio_int16.tobytes())
wav_io.seek(0)
return Response(content=wav_io.read(), media_type="audio/wav")
elif format.lower() == "opus":
opus_data = audio_tensor_to_opus_bytes(torch.from_numpy(full_audio), sample_rate=sample_rate)
return Response(content=opus_data, media_type="audio/opus")
else:
raise HTTPException(status_code=400, detail=f"Unsupported audio format: {format}")
@app.get("/", response_class=HTMLResponse)
def index():
"""
HTML demo page for Kokoro TTS.
This page provides a simple UI to enter text, choose a voice and speed,
and play synthesized audio from both the streaming and full endpoints.
"""
return """
<!DOCTYPE html>
<html>
<head>
<title>Kokoro TTS Demo</title>
</head>
<body>
<h1>Kokoro TTS Demo</h1>
<textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
<label for="voice">Voice:</label>
<input type="text" id="voice" value="af_heart"><br>
<label for="speed">Speed:</label>
<input type="number" step="0.1" id="speed" value="1.0"><br>
<label for="format">Format:</label>
<select id="format">
<option value="wav">WAV</option>
<option value="opus" selected>Opus</option>
</select><br><br>
<button onclick="playStreaming()">Play Streaming TTS</button>
<button onclick="playFull()">Play Full TTS</button>
<br><br>
<audio id="audio" controls autoplay></audio>
<script>
function playStreaming() {
const text = document.getElementById('text').value;
const voice = document.getElementById('voice').value;
const speed = document.getElementById('speed').value;
const format = document.getElementById('format').value;
const audio = document.getElementById('audio');
// Set the audio element's source to the streaming endpoint.
audio.src = `/tts/streaming?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}&format=${format}`;
audio.type = format === 'wav' ? 'audio/wav' : 'audio/opus';
audio.play();
}
function playFull() {
const text = document.getElementById('text').value;
const voice = document.getElementById('voice').value;
const speed = document.getElementById('speed').value;
const format = document.getElementById('format').value;
const audio = document.getElementById('audio');
// Set the audio element's source to the full TTS endpoint.
audio.src = `/tts/full?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}&format=${format}`;
audio.type = format === 'wav' ? 'audio/wav' : 'audio/opus';
audio.play();
}
</script>
</body>
</html>
"""
# ------------------------------------------------------------------------------
# Run with: uvicorn app:app --reload
# ------------------------------------------------------------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True) |