File size: 12,895 Bytes
7fd0353
 
 
 
 
 
 
 
 
e7655ad
 
7fd0353
f711016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd0353
e7655ad
 
 
 
 
 
7fd0353
 
 
 
009fc5c
f711016
7fd0353
 
 
 
 
 
 
 
 
 
009fc5c
7fd0353
 
 
 
009fc5c
 
7fd0353
 
 
 
 
 
 
 
65e1914
 
 
 
 
 
 
7fd0353
 
 
65e1914
7fd0353
 
65e1914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd0353
 
 
 
 
ada1283
7fd0353
009fc5c
7fd0353
 
 
009fc5c
7fd0353
eb95b12
7fd0353
 
e7655ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f711016
 
 
 
 
 
 
 
 
 
 
 
e7655ad
7fd0353
 
 
 
f711016
 
 
 
 
 
 
 
 
 
 
 
 
 
e7655ad
f711016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd0353
 
 
e7655ad
7fd0353
 
e7655ad
7fd0353
f711016
 
 
 
 
 
 
 
 
 
 
 
7fd0353
e7655ad
7fd0353
 
ada1283
e7655ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd0353
 
 
 
 
 
e7655ad
009fc5c
 
7fd0353
ada1283
009fc5c
 
 
 
 
 
 
 
 
 
 
e7655ad
 
 
 
 
 
009fc5c
 
 
 
 
 
 
 
 
e7655ad
009fc5c
 
e7655ad
 
009fc5c
 
 
 
 
 
e7655ad
009fc5c
 
e7655ad
 
009fc5c
 
 
 
 
7fd0353
 
 
 
 
 
 
 
009fc5c
e7655ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import io
import re
import wave
import struct

import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, Response, HTMLResponse
from fastapi.middleware import Middleware
from fastapi.middleware.gzip import GZipMiddleware

from misaki import en

import os
import numpy as np
from onnxruntime import InferenceSession
from huggingface_hub import snapshot_download

import json

# Load the configuration file
config_file_path = 'config.json'  # Update this with the path to your config file

with open(config_file_path, 'r') as f:
    config = json.load(f)

# Extract the phoneme vocabulary
phoneme_vocab = config['vocab']

# Step 3: Download the model and voice file from Hugging Face Hub
model_repo = "onnx-community/Kokoro-82M-v1.0-ONNX"
model_name = "onnx/model_q8f16.onnx"
voice_file = "voices"
local_dir = "."

# Download the model and voice file
snapshot_download(
    repo_id=model_repo,
    local_dir=local_dir,
    allow_patterns=[model_name, voice_file],
)

# Step 4: Load the model
model_path = os.path.join(local_dir, model_name)
sess = InferenceSession(model_path)

app = FastAPI(
    title="Kokoro TTS FastAPI",
    middleware=[
        Middleware(GZipMiddleware, compresslevel=9)  # Add GZip compression
    ]
)

# ------------------------------------------------------------------------------
# Global Pipeline Instance
# ------------------------------------------------------------------------------
# Create one pipeline instance for the entire app.



# ------------------------------------------------------------------------------
# Helper Functions
# ------------------------------------------------------------------------------

def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
    """
    Generate a WAV header for streaming.
    Since we don't know the final audio size, we set the data chunk size to a large dummy value.
    This header is sent only once at the start of the stream.
    """
    bits_per_sample = sample_width * 8
    byte_rate = sample_rate * num_channels * sample_width
    block_align = num_channels * sample_width
    # total file size = 36 + data_size (header is 44 bytes total)
    total_size = 36 + data_size
    header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
    fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
    data_chunk_header = struct.pack('<4sI', b'data', data_size)
    return header + fmt_chunk + data_chunk_header


def custom_split_text(text: str) -> list:
    """
    Custom splitting:
      - Start with a chunk size of 2 words.
      - For each chunk, if a period (".") is found in any word (except if it’s the very last word),
        then split the chunk at that word (include words up to that word).
      - Otherwise, use the current chunk size.
      - For subsequent chunks, increase the chunk size by 2.
      - If there are fewer than the desired number of words for a full chunk, add all remaining words.
    """
    words = text.split()
    chunks = []
    chunk_size = 2
    start = 0
    while start < len(words):
        candidate_end = start + chunk_size
        if candidate_end > len(words):
            candidate_end = len(words)
        chunk_words = words[start:candidate_end]
        # Look for a period in any word except the last one.
        split_index = None
        for i in range(len(chunk_words) - 1):
            if '.' in chunk_words[i]:
                split_index = i
                break
        if split_index is not None:
            candidate_end = start + split_index + 1
            chunk_words = words[start:candidate_end]
        chunks.append(" ".join(chunk_words))
        start = candidate_end
        chunk_size += 2  # Increase the chunk size by 2 for the next iteration.
    return chunks


def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
    """
    Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
    """
    # Ensure tensor is on CPU and flatten if necessary.
    audio_np = audio_tensor.cpu().numpy()
    if audio_np.ndim > 1:
        audio_np = audio_np.flatten()
    # Scale to int16 range.
    audio_int16 = np.int16(audio_np * 32767)
    return audio_int16.tobytes()


def audio_tensor_to_opus_bytes(audio_tensor: torch.Tensor, sample_rate: int = 24000, bitrate: int = 32000) -> bytes:
    """
    Convert a torch.FloatTensor to Opus encoded bytes.
    Requires the 'opuslib' package: pip install opuslib
    """
    try:
        import opuslib
    except ImportError:
        raise ImportError("opuslib is not installed. Please install it with: pip install opuslib")

    audio_np = audio_tensor.cpu().numpy()
    if audio_np.ndim > 1:
        audio_np = audio_np.flatten()
    # Scale to int16 range.  Important for opus.
    audio_int16 = np.int16(audio_np * 32767)

    encoder = opuslib.Encoder(sample_rate, 1, opuslib.APPLICATION_VOIP) # 1 channel for mono.

    # Calculate the number of frames to encode. Opus frames are 2.5, 5, 10, or 20 ms long.
    frame_size = int(sample_rate * 0.020)  # 20ms frame size

    encoded_data = b''
    for i in range(0, len(audio_int16), frame_size):
        frame = audio_int16[i:i + frame_size]
        if len(frame) < frame_size:
            # Pad the last frame with zeros if needed.
            frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
        encoded_frame = encoder.encode(frame.tobytes(), frame_size) # Encode the frame.
        encoded_data += encoded_frame

    return encoded_data

g2p = en.G2P(trf=False, british=False, fallback=None) # no transformer, American English

def tokenizer(text):
    phonemes_string, _ = g2p(text)
    phonemes = []
    for i in phonemes_string:
        phonemes.append(i)
    tokens = [phoneme_vocab[phoneme] for phoneme in phonemes if phoneme in phoneme_vocab]
    return tokens
    
    


# ------------------------------------------------------------------------------
# Endpoints
# ------------------------------------------------------------------------------

# @app.get("/tts/streaming", summary="Streaming TTS")
# def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "opus"):
#     """
#     Streaming TTS endpoint that returns a continuous audio stream.
#     Supports WAV (PCM) and Opus formats.  Opus offers significantly better compression.

#     The endpoint first yields a WAV header (with a dummy length) for WAV,
#     then yields encoded audio data for each text chunk as soon as it is generated.
#     """
#     # Split the input text using the custom doubling strategy.
#     chunks = custom_split_text(text)
#     sample_rate = 24000
#     num_channels = 1
#     sample_width = 2  # 16-bit PCM


#     def audio_generator():
#         if format.lower() == "wav":
#             # Yield the WAV header first.
#             header = generate_wav_header(sample_rate, num_channels, sample_width)
#             yield header
#         # Process and yield each chunk's audio data.
#         for i, chunk in enumerate(chunks):
#             print(f"Processing chunk {i}: {chunk}")  # Debugging
#             try:
#                 results = list(pipeline(chunk, voice=voice, speed=speed, split_pattern=None))
#                 for result in results:
#                     if result.audio is not None:
#                         if format.lower() == "wav":
#                             yield audio_tensor_to_pcm_bytes(result.audio)
#                         elif format.lower() == "opus":
#                             yield audio_tensor_to_opus_bytes(result.audio, sample_rate=sample_rate)
#                         else:
#                             raise ValueError(f"Unsupported audio format: {format}")
#                     else:
#                         print(f"Chunk {i}: No audio generated")
#             except Exception as e:
#                 print(f"Error processing chunk {i}: {e}")
#                 yield b'' # important so that streaming continues.  Consider returning an error sound.

#     media_type = "audio/wav" if format.lower() == "wav" else "audio/opus"

#     return StreamingResponse(
#         audio_generator(),
#         media_type=media_type,
#         headers={"Cache-Control": "no-cache"},
#     )


@app.get("/tts/full", summary="Full TTS")
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "wav"):
    """
    Full TTS endpoint that synthesizes the entire text, concatenates the audio,
    and returns a complete WAV or Opus file.
    """
    voice_path = os.path.join(local_dir, f"voices/{voice}.bin")    
    voices = np.fromfile(voice_path, dtype=np.float32).reshape(-1, 1, 256)

    tokens = tokenizer(text)

    final_token = [[0, *tokens]]

    full_audio = sess.run(None, dict(
        input_ids=tokens,
        style=ref_s,
        speed=np.ones(1, dtype=np.float32),
    ))[0]

    # Write the concatenated audio to an in-memory WAV or Opus file.
    sample_rate = 24000
    num_channels = 1
    sample_width = 2  # 16-bit PCM -> 2 bytes per sample
    if format.lower() == "wav":
        wav_io = io.BytesIO()
        with wave.open(wav_io, "wb") as wav_file:
            wav_file.setnchannels(num_channels)
            wav_file.setsampwidth(sample_width)
            wav_file.setframerate(sample_rate)
            full_audio_int16 = np.int16(full_audio * 32767)
            wav_file.writeframes(full_audio_int16.tobytes())
        wav_io.seek(0)
        return Response(content=wav_io.read(), media_type="audio/wav")
    elif format.lower() == "opus":
        opus_data = audio_tensor_to_opus_bytes(torch.from_numpy(full_audio), sample_rate=sample_rate)
        return Response(content=opus_data, media_type="audio/opus")
    else:
        raise HTTPException(status_code=400, detail=f"Unsupported audio format: {format}")



@app.get("/", response_class=HTMLResponse)
def index():
    """
    HTML demo page for Kokoro TTS.

    This page provides a simple UI to enter text, choose a voice and speed,
    and play synthesized audio from both the streaming and full endpoints.
    """
    return """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Kokoro TTS Demo</title>
    </head>
    <body>
        <h1>Kokoro TTS Demo</h1>
        <textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
        <label for="voice">Voice:</label>
        <input type="text" id="voice" value="af_heart"><br>
        <label for="speed">Speed:</label>
        <input type="number" step="0.1" id="speed" value="1.0"><br>
        <label for="format">Format:</label>
        <select id="format">
            <option value="wav">WAV</option>
            <option value="opus" selected>Opus</option>
        </select><br><br>
        <button onclick="playStreaming()">Play Streaming TTS</button>
        <button onclick="playFull()">Play Full TTS</button>
        <br><br>
        <audio id="audio" controls autoplay></audio>
        <script>
            function playStreaming() {
                const text = document.getElementById('text').value;
                const voice = document.getElementById('voice').value;
                const speed = document.getElementById('speed').value;
                const format = document.getElementById('format').value;
                const audio = document.getElementById('audio');
                // Set the audio element's source to the streaming endpoint.
                audio.src = `/tts/streaming?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}&format=${format}`;
                audio.type = format === 'wav' ? 'audio/wav' : 'audio/opus';
                audio.play();
            }
            function playFull() {
                const text = document.getElementById('text').value;
                const voice = document.getElementById('voice').value;
                const speed = document.getElementById('speed').value;
                const format = document.getElementById('format').value;
                const audio = document.getElementById('audio');
                // Set the audio element's source to the full TTS endpoint.
                audio.src = `/tts/full?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}&format=${format}`;
                audio.type = format === 'wav' ? 'audio/wav' : 'audio/opus';
                audio.play();
            }
        </script>
    </body>
    </html>
    """


# ------------------------------------------------------------------------------
# Run with: uvicorn app:app --reload
# ------------------------------------------------------------------------------
if __name__ == "__main__":
    import uvicorn

    uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)