Spaces:
Sleeping
Sleeping
File size: 8,175 Bytes
7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 ada1283 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 ada1283 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 009fc5c 7fd0353 ada1283 7fd0353 009fc5c 7fd0353 ada1283 009fc5c 7fd0353 009fc5c 7fd0353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import io
import re
import wave
import struct
import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, Response, HTMLResponse
from kokoro import KPipeline
app = FastAPI(title="Kokoro TTS FastAPI")
# ------------------------------------------------------------------------------
# Global Pipeline Instance
# ------------------------------------------------------------------------------
# Create one pipeline instance for the entire app.
pipeline = KPipeline(lang_code="a")
# ------------------------------------------------------------------------------
# Helper Functions
# ------------------------------------------------------------------------------
def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
"""
Generate a WAV header for streaming.
Since we don't know the final audio size, we set the data chunk size to a large dummy value.
This header is sent only once at the start of the stream.
"""
bits_per_sample = sample_width * 8
byte_rate = sample_rate * num_channels * sample_width
block_align = num_channels * sample_width
# total file size = 36 + data_size (header is 44 bytes total)
total_size = 36 + data_size
header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
data_chunk_header = struct.pack('<4sI', b'data', data_size)
return header + fmt_chunk + data_chunk_header
def custom_split_text(text: str) -> list:
"""
Custom splitting: split text into chunks where each chunk doubles in size.
"""
words = text.split()
chunks = []
chunk_size = 1
start = 0
while start < len(words):
end = start + chunk_size
chunk = " ".join(words[start:end])
chunks.append(chunk)
start = end
chunk_size *= 2 # double the chunk size for the next iteration
return chunks
def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
"""
Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
"""
# Ensure tensor is on CPU and flatten if necessary.
audio_np = audio_tensor.cpu().numpy()
if audio_np.ndim > 1:
audio_np = audio_np.flatten()
# Scale to int16 range.
audio_int16 = np.int16(audio_np * 32767)
return audio_int16.tobytes()
# ------------------------------------------------------------------------------
# Endpoints
# ------------------------------------------------------------------------------
@app.get("/tts/streaming", summary="Streaming TTS")
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0):
"""
Streaming TTS endpoint that returns a continuous WAV stream.
The endpoint first yields a WAV header (with a dummy length) then yields raw PCM data
for each text chunk as soon as it is generated.
"""
# Split the input text using the custom doubling strategy.
chunks = custom_split_text(text)
sample_rate = 24000
num_channels = 1
sample_width = 2 # 16-bit PCM
def audio_generator():
# Yield the WAV header first.
header = generate_wav_header(sample_rate, num_channels, sample_width)
yield header
# Process and yield each chunk's PCM data.
for i, chunk in enumerate(chunks):
print(f"Processing chunk {i}: {chunk}") # Debugging
try:
results = list(pipeline(chunk, voice=voice, speed=speed, split_pattern=None))
for result in results:
if result.audio is not None:
print(f"Chunk {i}: Audio generated") # Debugging
pcm_bytes = audio_tensor_to_pcm_bytes(result.audio)
for i in range(0, len(pcm_bytes), 100):
yield pcm_bytes[i:i + chunk_size]
else:
print(f"Chunk {i}: No audio generated")
except Exception as e:
print(f"Error processing chunk {i}: {e}")
return StreamingResponse(
audio_generator(),
media_type="audio/wav",
headers={"Cache-Control": "no-cache"},
)
@app.get("/tts/full", summary="Full TTS")
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0):
"""
Full TTS endpoint that synthesizes the entire text, concatenates the audio,
and returns a complete WAV file.
"""
# Use newline-based splitting via the pipeline's split_pattern.
results = list(pipeline(text, voice=voice, speed=speed, split_pattern=r"\n+"))
audio_segments = []
for result in results:
if result.audio is not None:
audio_np = result.audio.cpu().numpy()
if audio_np.ndim > 1:
audio_np = audio_np.flatten()
audio_segments.append(audio_np)
if not audio_segments:
raise HTTPException(status_code=500, detail="No audio generated.")
# Concatenate all audio segments.
full_audio = np.concatenate(audio_segments)
# Write the concatenated audio to an in-memory WAV file.
sample_rate = 24000
num_channels = 1
sample_width = 2 # 16-bit PCM -> 2 bytes per sample
wav_io = io.BytesIO()
with wave.open(wav_io, "wb") as wav_file:
wav_file.setnchannels(num_channels)
wav_file.setsampwidth(sample_width)
wav_file.setframerate(sample_rate)
full_audio_int16 = np.int16(full_audio * 32767)
wav_file.writeframes(full_audio_int16.tobytes())
wav_io.seek(0)
return Response(content=wav_io.read(), media_type="audio/wav")
@app.get("/", response_class=HTMLResponse)
def index():
"""
HTML demo page for Kokoro TTS.
This page provides a simple UI to enter text, choose a voice and speed,
and play synthesized audio from both the streaming and full endpoints.
"""
return """
<!DOCTYPE html>
<html>
<head>
<title>Kokoro TTS Demo</title>
</head>
<body>
<h1>Kokoro TTS Demo</h1>
<textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
<label for="voice">Voice:</label>
<input type="text" id="voice" value="af_heart"><br>
<label for="speed">Speed:</label>
<input type="number" step="0.1" id="speed" value="1.0"><br><br>
<button onclick="playStreaming()">Play Streaming TTS</button>
<button onclick="playFull()">Play Full TTS</button>
<br><br>
<audio id="audio" controls autoplay></audio>
<script>
function playStreaming() {
const text = document.getElementById('text').value;
const voice = document.getElementById('voice').value;
const speed = document.getElementById('speed').value;
const audio = document.getElementById('audio');
// Set the audio element's source to the streaming endpoint.
audio.src = `/tts/streaming?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
audio.play();
}
function playFull() {
const text = document.getElementById('text').value;
const voice = document.getElementById('voice').value;
const speed = document.getElementById('speed').value;
const audio = document.getElementById('audio');
// Set the audio element's source to the full TTS endpoint.
audio.src = `/tts/full?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
audio.play();
}
</script>
</body>
</html>
"""
# ------------------------------------------------------------------------------
# Run with: uvicorn app:app --reload
# ------------------------------------------------------------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|