File size: 8,175 Bytes
7fd0353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009fc5c
7fd0353
 
 
 
 
 
 
 
 
 
 
009fc5c
7fd0353
 
 
 
009fc5c
 
7fd0353
 
 
 
 
 
 
 
009fc5c
7fd0353
 
 
009fc5c
7fd0353
 
009fc5c
 
 
 
 
7fd0353
 
 
 
 
ada1283
7fd0353
009fc5c
7fd0353
 
 
009fc5c
7fd0353
 
 
 
 
 
 
 
 
 
 
 
 
009fc5c
7fd0353
 
009fc5c
7fd0353
 
 
 
 
 
 
 
 
 
 
009fc5c
7fd0353
 
 
 
009fc5c
 
 
 
7fd0353
 
 
 
ada1283
7fd0353
 
 
 
 
 
 
 
 
 
 
 
 
009fc5c
7fd0353
 
 
 
 
 
 
 
 
 
 
 
009fc5c
7fd0353
 
009fc5c
7fd0353
 
ada1283
7fd0353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009fc5c
 
 
7fd0353
ada1283
009fc5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd0353
 
 
 
 
 
 
 
009fc5c
7fd0353
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import io
import re
import wave
import struct

import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, Response, HTMLResponse

from kokoro import KPipeline

app = FastAPI(title="Kokoro TTS FastAPI")

# ------------------------------------------------------------------------------
# Global Pipeline Instance
# ------------------------------------------------------------------------------
# Create one pipeline instance for the entire app.
pipeline = KPipeline(lang_code="a")


# ------------------------------------------------------------------------------
# Helper Functions
# ------------------------------------------------------------------------------

def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
    """
    Generate a WAV header for streaming.
    Since we don't know the final audio size, we set the data chunk size to a large dummy value.
    This header is sent only once at the start of the stream.
    """
    bits_per_sample = sample_width * 8
    byte_rate = sample_rate * num_channels * sample_width
    block_align = num_channels * sample_width
    # total file size = 36 + data_size (header is 44 bytes total)
    total_size = 36 + data_size
    header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
    fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
    data_chunk_header = struct.pack('<4sI', b'data', data_size)
    return header + fmt_chunk + data_chunk_header


def custom_split_text(text: str) -> list:
    """
    Custom splitting: split text into chunks where each chunk doubles in size.
    """
    words = text.split()
    chunks = []
    chunk_size = 1
    start = 0
    while start < len(words):
        end = start + chunk_size
        chunk = " ".join(words[start:end])
        chunks.append(chunk)
        start = end
        chunk_size *= 2  # double the chunk size for the next iteration
    return chunks


def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
    """
    Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
    """
    # Ensure tensor is on CPU and flatten if necessary.
    audio_np = audio_tensor.cpu().numpy()
    if audio_np.ndim > 1:
        audio_np = audio_np.flatten()
    # Scale to int16 range.
    audio_int16 = np.int16(audio_np * 32767)
    return audio_int16.tobytes()


# ------------------------------------------------------------------------------
# Endpoints
# ------------------------------------------------------------------------------

@app.get("/tts/streaming", summary="Streaming TTS")
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0):
    """
    Streaming TTS endpoint that returns a continuous WAV stream.
    
    The endpoint first yields a WAV header (with a dummy length) then yields raw PCM data
    for each text chunk as soon as it is generated.
    """
    # Split the input text using the custom doubling strategy.
    chunks = custom_split_text(text)
    sample_rate = 24000
    num_channels = 1
    sample_width = 2  # 16-bit PCM

    def audio_generator():
        # Yield the WAV header first.
        header = generate_wav_header(sample_rate, num_channels, sample_width)
        yield header
        # Process and yield each chunk's PCM data.
        for i, chunk in enumerate(chunks):
            print(f"Processing chunk {i}: {chunk}")  # Debugging
            try:
                results = list(pipeline(chunk, voice=voice, speed=speed, split_pattern=None))
                for result in results:
                    if result.audio is not None:
                        print(f"Chunk {i}: Audio generated")  # Debugging
                        pcm_bytes = audio_tensor_to_pcm_bytes(result.audio)
                        for i in range(0, len(pcm_bytes), 100):
                            yield pcm_bytes[i:i + chunk_size]
                    else:
                        print(f"Chunk {i}: No audio generated")
            except Exception as e:
                print(f"Error processing chunk {i}: {e}")

    return StreamingResponse(
        audio_generator(),
        media_type="audio/wav",
        headers={"Cache-Control": "no-cache"},
    )


@app.get("/tts/full", summary="Full TTS")
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0):
    """
    Full TTS endpoint that synthesizes the entire text, concatenates the audio,
    and returns a complete WAV file.
    """
    # Use newline-based splitting via the pipeline's split_pattern.
    results = list(pipeline(text, voice=voice, speed=speed, split_pattern=r"\n+"))
    audio_segments = []
    for result in results:
        if result.audio is not None:
            audio_np = result.audio.cpu().numpy()
            if audio_np.ndim > 1:
                audio_np = audio_np.flatten()
            audio_segments.append(audio_np)

    if not audio_segments:
        raise HTTPException(status_code=500, detail="No audio generated.")

    # Concatenate all audio segments.
    full_audio = np.concatenate(audio_segments)

    # Write the concatenated audio to an in-memory WAV file.
    sample_rate = 24000
    num_channels = 1
    sample_width = 2  # 16-bit PCM -> 2 bytes per sample
    wav_io = io.BytesIO()
    with wave.open(wav_io, "wb") as wav_file:
        wav_file.setnchannels(num_channels)
        wav_file.setsampwidth(sample_width)
        wav_file.setframerate(sample_rate)
        full_audio_int16 = np.int16(full_audio * 32767)
        wav_file.writeframes(full_audio_int16.tobytes())
    wav_io.seek(0)
    return Response(content=wav_io.read(), media_type="audio/wav")


@app.get("/", response_class=HTMLResponse)
def index():
    """
    HTML demo page for Kokoro TTS.
    
    This page provides a simple UI to enter text, choose a voice and speed,
    and play synthesized audio from both the streaming and full endpoints.
    """
    return """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Kokoro TTS Demo</title>
    </head>
    <body>
        <h1>Kokoro TTS Demo</h1>
        <textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
        <label for="voice">Voice:</label>
        <input type="text" id="voice" value="af_heart"><br>
        <label for="speed">Speed:</label>
        <input type="number" step="0.1" id="speed" value="1.0"><br><br>
        <button onclick="playStreaming()">Play Streaming TTS</button>
        <button onclick="playFull()">Play Full TTS</button>
        <br><br>
        <audio id="audio" controls autoplay></audio>
        <script>
            function playStreaming() {
                const text = document.getElementById('text').value;
                const voice = document.getElementById('voice').value;
                const speed = document.getElementById('speed').value;
                const audio = document.getElementById('audio');
                // Set the audio element's source to the streaming endpoint.
                audio.src = `/tts/streaming?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
                audio.play();
            }
            function playFull() {
                const text = document.getElementById('text').value;
                const voice = document.getElementById('voice').value;
                const speed = document.getElementById('speed').value;
                const audio = document.getElementById('audio');
                // Set the audio element's source to the full TTS endpoint.
                audio.src = `/tts/full?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
                audio.play();
            }
        </script>
    </body>
    </html>
    """


# ------------------------------------------------------------------------------
# Run with: uvicorn app:app --reload
# ------------------------------------------------------------------------------
if __name__ == "__main__":
    import uvicorn

    uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)