File size: 9,218 Bytes
7fd0353
 
 
 
 
 
 
 
 
e7655ad
 
7fd0353
80ce7b7
7fd0353
e7655ad
bc93f92
 
 
 
e7655ad
7fd0353
bc93f92
 
 
 
80ce7b7
 
b9f1e8b
7fd0353
bc93f92
 
 
7fd0353
 
bc93f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f023a07
80ce7b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f023a07
bc93f92
 
 
 
 
 
 
 
 
 
f023a07
bc93f92
 
 
 
 
 
80ce7b7
 
bc93f92
80ce7b7
bc93f92
80ce7b7
 
bc93f92
 
 
 
 
 
80ce7b7
 
 
f023a07
80ce7b7
f023a07
80ce7b7
 
 
 
f023a07
80ce7b7
 
 
 
 
bc93f92
 
 
 
 
 
ada1283
7fd0353
80ce7b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc93f92
 
7fd0353
 
 
bc93f92
 
80ce7b7
 
 
bc93f92
 
80ce7b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f023a07
bc93f92
 
 
 
 
f023a07
bc93f92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import io
import re
import wave
import struct

import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, Response, HTMLResponse
from fastapi.middleware import Middleware
from fastapi.middleware.gzip import GZipMiddleware

from kokoro import StreamKPipeline, KPipeline # Import StreamKPipeline and KPipeline

app = FastAPI(
    title="Kokoro TTS FastAPI",
    middleware=[
        Middleware(GZipMiddleware, compresslevel=9)  # Add GZip compression
    ]
)

# ------------------------------------------------------------------------------
# Global Pipeline Instance
# ------------------------------------------------------------------------------
# Create one pipeline instance for the entire app.
stream_pipeline = StreamKPipeline(lang_code="a") # Use StreamKPipeline for streaming
full_pipeline = KPipeline(lang_code="a") # Keep KPipeline for full TTS


# ------------------------------------------------------------------------------
# Helper Functions
# ------------------------------------------------------------------------------

def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
    """
    Generate a WAV header for streaming.
    Since we don't know the final audio size, we set the data chunk size to a large dummy value.
    This header is sent only once at the start of the stream.
    """
    bits_per_sample = sample_width * 8
    byte_rate = sample_rate * num_channels * sample_width
    block_align = num_channels * sample_width
    # total file size = 36 + data_size (header is 44 bytes total)
    total_size = 36 + data_size
    header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
    fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
    data_chunk_header = struct.pack('<4sI', b'data', data_size)
    return header + fmt_chunk + data_chunk_header


def custom_split_text(text: str) -> list:
    """
    Custom splitting:
      - Start with a chunk size of 2 words.
      - For each chunk, if a period (".") is found in any word (except if it’s the very last word),
        then split the chunk at that word (include words up to that word).
      - Otherwise, use the current chunk size.
      - For subsequent chunks, increase the chunk size by 2.
      - If there are fewer than the desired number of words for a full chunk, add all remaining words.
    """
    words = text.split()
    chunks = []
    chunk_size = 2
    start = 0
    while start < len(words):
        candidate_end = start + chunk_size
        if candidate_end > len(words):
            candidate_end = len(words)
        chunk_words = words[start:candidate_end]
        # Look for a period in any word except the last one.
        split_index = None
        for i in range(len(chunk_words) - 1):
            if '.' in chunk_words[i]:
                split_index = i
                break
        if split_index is not None:
            candidate_end = start + split_index + 1
            chunk_words = words[start:candidate_end]
        chunks.append(" ".join(chunk_words))
        start = candidate_end
        chunk_size += 2  # Increase the chunk size by 2 for the next iteration.
    return chunks


def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
    """
    Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
    """
    # Ensure tensor is on CPU and flatten if necessary.
    audio_np = audio_tensor.cpu().numpy()
    if audio_np.ndim > 1:
        audio_np = audio_np.flatten()
    # Scale to int16 range.
    audio_int16 = np.int16(audio_np * 32767)
    return audio_int16.tobytes()



# ------------------------------------------------------------------------------
# Endpoints
# ------------------------------------------------------------------------------

@app.get("/tts/streaming", summary="Streaming TTS")
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0):
    """
    Streaming TTS endpoint that returns a continuous audio stream in WAV format (PCM).

    The endpoint yields a WAV header (with a dummy length) only once at the start of the stream,
    then yields PCM audio data chunks as they are generated in real-time.
    """
    sample_rate = 24000
    num_channels = 1
    sample_width = 2  # 16-bit PCM

    def audio_generator():
        # Yield the WAV header first.
        header = generate_wav_header(sample_rate, num_channels, sample_width)
        yield header

        # Stream audio chunks from StreamKPipeline
        try:
            for stream_result in stream_pipeline(text, voice=voice, speed=speed, split_pattern=r'([.!?…])\s+'): # Split at sentence ends
                if stream_result.audio_chunk is not None:
                    pcm_bytes = audio_tensor_to_pcm_bytes(stream_result.audio_chunk)
                    yield pcm_bytes
        except Exception as e:
            print(f"Streaming error: {e}")
            yield b'' # Keep stream alive on error


    media_type = "audio/wav"

    return StreamingResponse(
        audio_generator(),
        media_type=media_type,
        headers={"Cache-Control": "no-cache"},
    )


@app.get("/tts/full", summary="Full TTS")
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0):
    """
    Full TTS endpoint that synthesizes the entire text using KPipeline,
    concatenates the audio, and returns a complete WAV file.
    """
    # Use newline-based splitting via the pipeline's split_pattern.
    results = list(full_pipeline(text, voice=voice, speed=speed, split_pattern=r"\n+"))
    audio_segments = []
    for result in results:
        if result.audio is not None:
            audio_np = result.audio.cpu().numpy()
            if audio_np.ndim > 1:
                audio_np = audio_np.flatten()
            audio_segments.append(audio_np)

    if not audio_segments:
        raise HTTPException(status_code=500, detail="No audio generated.")

    # Concatenate all audio segments.
    full_audio = np.concatenate(audio_segments)

    # Write the concatenated audio to an in-memory WAV file.
    sample_rate = 24000
    num_channels = 1
    sample_width = 2  # 16-bit PCM -> 2 bytes per sample
    wav_io = io.BytesIO()
    with wave.open(wav_io, "wb") as wav_file:
        wav_file.setnchannels(num_channels)
        wav_file.setsampwidth(sample_width)
        wav_file.setframerate(sample_rate)
        full_audio_int16 = np.int16(full_audio * 32767)
        wav_file.writeframes(full_audio_int16.tobytes())
    wav_io.seek(0)
    return Response(content=wav_io.read(), media_type="audio/wav")



@app.get("/", response_class=HTMLResponse)
def index():
    """
    HTML demo page for Kokoro TTS.

    This page provides a simple UI to enter text, choose a voice and speed,
    and play synthesized audio from both the streaming and full endpoints.
    """
    return """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Kokoro TTS Demo</title>
    </head>
    <body>
        <h1>Kokoro TTS Demo</h1>
        <textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
        <label for="voice">Voice:</label>
        <input type="text" id="voice" value="af_heart"><br>
        <label for="speed">Speed:</label>
        <input type="number" step="0.1" id="speed" value="1.0"><br>
        <br><br>
        <button onclick="playStreaming()">Play Streaming TTS</button>
        <button onclick="playFull()">Play Full TTS (Download WAV)</button>
        <br><br>
        <audio id="audio" controls autoplay></audio>
        <script>
            function playStreaming() {
                const text = document.getElementById('text').value;
                const voice = document.getElementById('voice').value;
                const speed = document.getElementById('speed').value;
                const audio = document.getElementById('audio');
                // Set the audio element's source to the streaming endpoint.
                audio.src = `/tts/streaming?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
                audio.type = 'audio/wav';
                audio.play();
            }
            function playFull() {
                const text = document.getElementById('text').value;
                const voice = document.getElementById('voice').value;
                const speed = document.getElementById('speed').value;
                const audio = document.getElementById('audio');
                // Set the audio element's source to the full TTS endpoint.
                audio.src = `/tts/full?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
                audio.type = 'audio/wav';
                audio.play();
            }
        </script>
    </body>
    </html>
    """


# ------------------------------------------------------------------------------
# Run with: uvicorn app:app --reload
# ------------------------------------------------------------------------------
if __name__ == "__main__":
    import uvicorn

    uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)