Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,229 +10,191 @@ from fastapi.responses import StreamingResponse, Response, HTMLResponse
|
|
10 |
from fastapi.middleware import Middleware
|
11 |
from fastapi.middleware.gzip import GZipMiddleware
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
app = FastAPI(
|
16 |
-
title="Kokoro TTS FastAPI",
|
17 |
-
middleware=[
|
18 |
-
Middleware(GZipMiddleware, compresslevel=9) # Add GZip compression
|
19 |
-
]
|
20 |
)
|
21 |
|
22 |
-
------------------------------------------------------------------------------
|
23 |
-
Global Pipeline Instance
|
24 |
-
------------------------------------------------------------------------------
|
25 |
-
Create one pipeline instance for the entire app.
|
26 |
|
27 |
-
pipeline =
|
28 |
|
29 |
-
------------------------------------------------------------------------------
|
30 |
-
Helper Functions
|
31 |
-
------------------------------------------------------------------------------
|
32 |
|
33 |
def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
|
34 |
-
"""
|
35 |
-
Generate a WAV header for streaming.
|
36 |
-
Since we don't know the final audio size, we set the data chunk size to a large dummy value.
|
37 |
-
This header is sent only once at the start of the stream.
|
38 |
-
"""
|
39 |
-
bits_per_sample = sample_width * 8
|
40 |
-
byte_rate = sample_rate * num_channels * sample_width
|
41 |
-
block_align = num_channels * sample_width
|
42 |
-
# total file size = 36 + data_size (header is 44 bytes total)
|
43 |
-
total_size = 36 + data_size
|
44 |
-
header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
|
45 |
-
fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
|
46 |
-
data_chunk_header = struct.pack('<4sI', b'data', data_size)
|
47 |
-
return header + fmt_chunk + data_chunk_header
|
48 |
-
|
49 |
-
def custom_split_text(text: str) -> list:
|
50 |
-
"""
|
51 |
-
Custom splitting:
|
52 |
-
- Start with a chunk size of 2 words.
|
53 |
-
- For each chunk, if a period (".") is found in any word (except if itβs the very last word),
|
54 |
-
then split the chunk at that word (include words up to that word).
|
55 |
-
- Otherwise, use the current chunk size.
|
56 |
-
- For subsequent chunks, increase the chunk size by 2.
|
57 |
-
- If there are fewer than the desired number of words for a full chunk, add all remaining words.
|
58 |
-
"""
|
59 |
-
words = text.split()
|
60 |
-
chunks = []
|
61 |
-
chunk_size = 2
|
62 |
-
start = 0
|
63 |
-
while start < len(words):
|
64 |
-
candidate_end = start + chunk_size
|
65 |
-
if candidate_end > len(words):
|
66 |
-
candidate_end = len(words)
|
67 |
-
chunk_words = words[start:candidate_end]
|
68 |
-
# Look for a period in any word except the last one.
|
69 |
-
split_index = None
|
70 |
-
for i in range(len(chunk_words) - 1):
|
71 |
-
if '.' in chunk_words[i]:
|
72 |
-
split_index = i
|
73 |
-
break
|
74 |
-
if split_index is not None:
|
75 |
-
candidate_end = start + split_index + 1
|
76 |
-
chunk_words = words[start:candidate_end]
|
77 |
-
chunks.append(" ".join(chunk_words))
|
78 |
-
start = candidate_end
|
79 |
-
chunk_size += 2 # Increase the chunk size by 2 for the next iteration.
|
80 |
-
return chunks
|
81 |
|
82 |
def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
|
83 |
-
"""
|
84 |
-
Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
|
85 |
-
"""
|
86 |
-
# Ensure tensor is on CPU and flatten if necessary.
|
87 |
-
audio_np = audio_tensor.cpu().numpy()
|
88 |
-
if audio_np.ndim > 1:
|
89 |
-
audio_np = audio_np.flatten()
|
90 |
-
# Scale to int16 range.
|
91 |
-
audio_int16 = np.int16(audio_np * 32767)
|
92 |
-
return audio_int16.tobytes()
|
93 |
|
94 |
def audio_tensor_to_opus_bytes(audio_tensor: torch.Tensor, sample_rate: int = 24000, bitrate: int = 32000) -> bytes:
|
95 |
-
"""
|
96 |
-
Convert a torch.FloatTensor to Opus encoded bytes.
|
97 |
-
Requires the 'opuslib' package: pip install opuslib
|
98 |
-
"""
|
99 |
-
try:
|
100 |
-
import opuslib
|
101 |
-
except ImportError:
|
102 |
-
raise ImportError("opuslib is not installed. Please install it with: pip install opuslib")
|
103 |
-
|
104 |
-
audio_np = audio_tensor.cpu().numpy()
|
105 |
-
if audio_np.ndim > 1:
|
106 |
-
|
107 |
-
# Scale to int16 range. Important for opus.
|
108 |
-
audio_int16 = np.int16(audio_np * 32767)
|
109 |
-
|
110 |
-
encoder = opuslib.Encoder(sample_rate, 1, opuslib.APPLICATION_VOIP) # 1 channel for mono.
|
111 |
-
|
112 |
-
# Calculate the number of frames to encode. Opus frames are 2.5, 5, 10, or 20 ms long.
|
113 |
-
frame_size = int(sample_rate * 0.020) # 20ms frame size
|
114 |
-
|
115 |
-
encoded_data = b''
|
116 |
-
for i in range(0, len(audio_int16), frame_size):
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
return encoded_data
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
------------------------------------------------------------------------------
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
@app.get("/tts/streaming", summary="Streaming TTS")
|
133 |
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "opus"):
|
134 |
-
"""
|
135 |
-
Streaming TTS endpoint that
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
The endpoint first yields a WAV header (with a dummy length) for WAV,
|
139 |
-
then yields encoded audio data for each text chunk as soon as it is generated.
|
140 |
-
"""
|
141 |
-
# Split the input text using the custom doubling strategy.
|
142 |
-
chunks = custom_split_text(text)
|
143 |
-
sample_rate = 24000
|
144 |
-
num_channels = 1
|
145 |
-
sample_width = 2 # 16-bit PCM
|
146 |
-
|
147 |
-
def audio_generator():
|
148 |
-
if format.lower() == "wav":
|
149 |
-
# Yield the WAV header first.
|
150 |
-
header = generate_wav_header(sample_rate, num_channels, sample_width)
|
151 |
-
yield header
|
152 |
-
# Process and yield each chunk's audio data.
|
153 |
-
for i, chunk in enumerate(chunks):
|
154 |
-
print(f"Processing chunk {i}: {chunk}") # Debugging
|
155 |
try:
|
156 |
-
|
157 |
-
for
|
158 |
-
if
|
159 |
if format.lower() == "wav":
|
160 |
-
yield audio_tensor_to_pcm_bytes(
|
161 |
elif format.lower() == "opus":
|
162 |
-
yield audio_tensor_to_opus_bytes(
|
163 |
else:
|
164 |
raise ValueError(f"Unsupported audio format: {format}")
|
165 |
-
|
166 |
-
print(f"Chunk {i}: No audio generated")
|
167 |
except Exception as e:
|
168 |
-
print(f"Error
|
169 |
-
yield b''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
media_type = "audio/wav" if format.lower() == "wav" else "audio/opus"
|
172 |
|
173 |
-
return StreamingResponse(
|
174 |
-
audio_generator(),
|
175 |
-
media_type=media_type,
|
176 |
-
headers={"Cache-Control": "no-cache"},
|
177 |
-
)
|
178 |
-
content_copy
|
179 |
-
download
|
180 |
-
Use code with caution.
|
181 |
|
182 |
@app.get("/tts/full", summary="Full TTS")
|
183 |
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "wav"):
|
184 |
-
"""
|
185 |
-
Full TTS endpoint
|
186 |
-
|
187 |
-
"""
|
188 |
-
# Use newline-based splitting
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
@app.get("/", response_class=HTMLResponse)
|
228 |
def index():
|
229 |
-
"""
|
230 |
-
HTML demo page for Kokoro TTS.
|
231 |
-
|
232 |
-
|
233 |
-
and play synthesized audio from both the streaming and full endpoints.
|
234 |
-
"""
|
235 |
-
return """
|
236 |
<!DOCTYPE html>
|
237 |
<html>
|
238 |
<head>
|
@@ -281,14 +243,12 @@ return """
|
|
281 |
</body>
|
282 |
</html>
|
283 |
"""
|
284 |
-
content_copy
|
285 |
-
download
|
286 |
-
Use code with caution.
|
287 |
-
------------------------------------------------------------------------------
|
288 |
-
Run with: uvicorn app:app --reload
|
289 |
-
------------------------------------------------------------------------------
|
290 |
|
291 |
-
|
292 |
-
|
|
|
|
|
|
|
|
|
293 |
|
294 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|
|
|
10 |
from fastapi.middleware import Middleware
|
11 |
from fastapi.middleware.gzip import GZipMiddleware
|
12 |
|
13 |
+
# --- IMPORTANT: Use the AutoregressiveStreamKPipeline ---
|
14 |
+
from kokoro.pipeline import AutoregressiveStreamKPipeline # Or wherever your pipeline is.
|
15 |
|
16 |
app = FastAPI(
|
17 |
+
title="Kokoro TTS FastAPI",
|
18 |
+
middleware=[
|
19 |
+
Middleware(GZipMiddleware, compresslevel=9) # Add GZip compression
|
20 |
+
]
|
21 |
)
|
22 |
|
23 |
+
# ------------------------------------------------------------------------------
|
24 |
+
# Global Pipeline Instance
|
25 |
+
# ------------------------------------------------------------------------------
|
26 |
+
# Create one pipeline instance for the entire app.
|
27 |
|
28 |
+
pipeline = AutoregressiveStreamKPipeline(lang_code="a") # Use the autoregressive pipeline
|
29 |
|
30 |
+
# ------------------------------------------------------------------------------
|
31 |
+
# Helper Functions
|
32 |
+
# ------------------------------------------------------------------------------
|
33 |
|
34 |
def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
|
35 |
+
"""
|
36 |
+
Generate a WAV header for streaming.
|
37 |
+
Since we don't know the final audio size, we set the data chunk size to a large dummy value.
|
38 |
+
This header is sent only once at the start of the stream.
|
39 |
+
"""
|
40 |
+
bits_per_sample = sample_width * 8
|
41 |
+
byte_rate = sample_rate * num_channels * sample_width
|
42 |
+
block_align = num_channels * sample_width
|
43 |
+
# total file size = 36 + data_size (header is 44 bytes total)
|
44 |
+
total_size = 36 + data_size
|
45 |
+
header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
|
46 |
+
fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
|
47 |
+
data_chunk_header = struct.pack('<4sI', b'data', data_size)
|
48 |
+
return header + fmt_chunk + data_chunk_header
|
49 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
|
52 |
+
"""
|
53 |
+
Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
|
54 |
+
"""
|
55 |
+
# Ensure tensor is on CPU and flatten if necessary.
|
56 |
+
audio_np = audio_tensor.cpu().numpy()
|
57 |
+
if audio_np.ndim > 1:
|
58 |
+
audio_np = audio_np.flatten()
|
59 |
+
# Scale to int16 range.
|
60 |
+
audio_int16 = np.int16(audio_np * 32767)
|
61 |
+
return audio_int16.tobytes()
|
62 |
|
63 |
def audio_tensor_to_opus_bytes(audio_tensor: torch.Tensor, sample_rate: int = 24000, bitrate: int = 32000) -> bytes:
|
64 |
+
"""
|
65 |
+
Convert a torch.FloatTensor to Opus encoded bytes.
|
66 |
+
Requires the 'opuslib' package: pip install opuslib
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
import opuslib
|
70 |
+
except ImportError:
|
71 |
+
raise ImportError("opuslib is not installed. Please install it with: pip install opuslib")
|
72 |
+
|
73 |
+
audio_np = audio_tensor.cpu().numpy()
|
74 |
+
if audio_np.ndim > 1:
|
75 |
+
audio_np = audio_np.flatten()
|
76 |
+
# Scale to int16 range. Important for opus.
|
77 |
+
audio_int16 = np.int16(audio_np * 32767)
|
78 |
+
|
79 |
+
encoder = opuslib.Encoder(sample_rate, 1, opuslib.APPLICATION_VOIP) # 1 channel for mono.
|
80 |
+
|
81 |
+
# Calculate the number of frames to encode. Opus frames are 2.5, 5, 10, or 20 ms long.
|
82 |
+
frame_size = int(sample_rate * 0.020) # 20ms frame size
|
83 |
+
|
84 |
+
encoded_data = b''
|
85 |
+
for i in range(0, len(audio_int16), frame_size):
|
86 |
+
frame = audio_int16[i:i + frame_size]
|
87 |
+
if len(frame) < frame_size:
|
88 |
+
# Pad the last frame with zeros if needed.
|
89 |
+
frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
|
90 |
+
encoded_frame = encoder.encode(frame.tobytes(), frame_size) # Encode the frame.
|
91 |
+
encoded_data += encoded_frame
|
92 |
+
|
93 |
+
return encoded_data
|
94 |
+
|
95 |
+
# ------------------------------------------------------------------------------
|
96 |
+
# Endpoints
|
97 |
+
# ------------------------------------------------------------------------------
|
98 |
+
|
99 |
+
@app.get("/tts/streaming", summary="Streaming TTS (Autoregressive)")
|
|
|
|
|
100 |
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "opus"):
|
101 |
+
"""
|
102 |
+
Streaming TTS endpoint that attempts autoregressive, near sample-by-sample output.
|
103 |
+
|
104 |
+
IMPORTANT: This is EXPERIMENTAL and may have reduced quality compared to
|
105 |
+
the full or chunking methods. It's also likely to be slower due to the
|
106 |
+
per-phoneme processing overhead.
|
107 |
+
"""
|
108 |
+
sample_rate = 24000
|
109 |
+
num_channels = 1
|
110 |
+
sample_width = 2 # 16-bit PCM
|
111 |
+
|
112 |
+
def audio_generator():
|
113 |
+
if format.lower() == "wav":
|
114 |
+
# Yield the WAV header first.
|
115 |
+
header = generate_wav_header(sample_rate, num_channels, sample_width)
|
116 |
+
yield header
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
try:
|
119 |
+
# Use the AUTOREGRESSIVE pipeline
|
120 |
+
for audio_chunk in pipeline(text, voice=voice, speed=speed):
|
121 |
+
if audio_chunk.numel() > 0: # Ensure we have audio data
|
122 |
if format.lower() == "wav":
|
123 |
+
yield audio_tensor_to_pcm_bytes(audio_chunk)
|
124 |
elif format.lower() == "opus":
|
125 |
+
yield audio_tensor_to_opus_bytes(audio_chunk, sample_rate=sample_rate)
|
126 |
else:
|
127 |
raise ValueError(f"Unsupported audio format: {format}")
|
128 |
+
|
|
|
129 |
except Exception as e:
|
130 |
+
print(f"Error during streaming: {e}")
|
131 |
+
yield b'' # Yield empty bytes to avoid breaking the stream
|
132 |
+
|
133 |
+
media_type = "audio/wav" if format.lower() == "wav" else "audio/opus"
|
134 |
+
return StreamingResponse(
|
135 |
+
audio_generator(),
|
136 |
+
media_type=media_type,
|
137 |
+
headers={"Cache-Control": "no-cache"},
|
138 |
+
)
|
139 |
|
|
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
@app.get("/tts/full", summary="Full TTS")
|
143 |
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "wav"):
|
144 |
+
"""
|
145 |
+
Full TTS endpoint (no streaming). Synthesizes the entire text and returns
|
146 |
+
a complete WAV or Opus file.
|
147 |
+
"""
|
148 |
+
# Use newline-based splitting. This is the *original* KPipeline,
|
149 |
+
# which is better for full synthesis. It's important to use
|
150 |
+
# the right pipeline for the right task.
|
151 |
+
from kokoro.pipeline import KPipeline # Import here to avoid circular import
|
152 |
+
full_pipeline = KPipeline(lang_code="a")
|
153 |
+
|
154 |
+
results = list(full_pipeline(text, voice=voice, speed=speed, split_pattern=r"\n+"))
|
155 |
+
audio_segments = []
|
156 |
+
for result in results:
|
157 |
+
if result.audio is not None:
|
158 |
+
audio_np = result.audio.cpu().numpy()
|
159 |
+
if audio_np.ndim > 1:
|
160 |
+
audio_np = audio_np.flatten()
|
161 |
+
audio_segments.append(audio_np)
|
162 |
+
|
163 |
+
if not audio_segments:
|
164 |
+
raise HTTPException(status_code=500, detail="No audio generated.")
|
165 |
+
|
166 |
+
# Concatenate all audio segments.
|
167 |
+
full_audio = np.concatenate(audio_segments)
|
168 |
+
|
169 |
+
# Write the concatenated audio to an in-memory WAV or Opus file.
|
170 |
+
sample_rate = 24000
|
171 |
+
num_channels = 1
|
172 |
+
sample_width = 2 # 16-bit PCM -> 2 bytes per sample
|
173 |
+
if format.lower() == "wav":
|
174 |
+
wav_io = io.BytesIO()
|
175 |
+
with wave.open(wav_io, "wb") as wav_file:
|
176 |
+
wav_file.setnchannels(num_channels)
|
177 |
+
wav_file.setsampwidth(sample_width)
|
178 |
+
wav_file.setframerate(sample_rate)
|
179 |
+
full_audio_int16 = np.int16(full_audio * 32767)
|
180 |
+
wav_file.writeframes(full_audio_int16.tobytes())
|
181 |
+
wav_io.seek(0)
|
182 |
+
return Response(content=wav_io.read(), media_type="audio/wav")
|
183 |
+
elif format.lower() == "opus":
|
184 |
+
opus_data = audio_tensor_to_opus_bytes(torch.from_numpy(full_audio), sample_rate=sample_rate)
|
185 |
+
return Response(content=opus_data, media_type="audio/opus")
|
186 |
+
else:
|
187 |
+
raise HTTPException(status_code=400, detail=f"Unsupported audio format: {format}")
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
|
192 |
@app.get("/", response_class=HTMLResponse)
|
193 |
def index():
|
194 |
+
"""
|
195 |
+
HTML demo page for Kokoro TTS.
|
196 |
+
"""
|
197 |
+
return """
|
|
|
|
|
|
|
198 |
<!DOCTYPE html>
|
199 |
<html>
|
200 |
<head>
|
|
|
243 |
</body>
|
244 |
</html>
|
245 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
+
# ------------------------------------------------------------------------------
|
248 |
+
# Run with: uvicorn app:app --reload
|
249 |
+
# ------------------------------------------------------------------------------
|
250 |
+
|
251 |
+
if __name__ == "__main__":
|
252 |
+
import uvicorn
|
253 |
|
254 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|