Spaces:
Runtime error
Runtime error
File size: 5,285 Bytes
7fd0353 0870f8f 7fd0353 e7655ad 7fd0353 0870f8f 7fd0353 e7655ad bc93f92 e7655ad 7fd0353 bc93f92 0870f8f b9f1e8b 0870f8f 7fd0353 bc93f92 7fd0353 bc93f92 f023a07 bc93f92 f023a07 bc93f92 80ce7b7 0870f8f bc93f92 0870f8f bc93f92 0870f8f bc93f92 80ce7b7 f023a07 0870f8f f023a07 0870f8f 80ce7b7 0870f8f 80ce7b7 bc93f92 ada1283 0870f8f 7fd0353 bc93f92 80ce7b7 0870f8f bc93f92 80ce7b7 0870f8f 80ce7b7 0870f8f 80ce7b7 f023a07 bc93f92 f023a07 bc93f92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import io
import re
import wave
import struct
import time
import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, Response, HTMLResponse
from fastapi.middleware import Middleware
from fastapi.middleware.gzip import GZipMiddleware
from kokoro import KPipeline, StreamKPipeline
from kokoro.model import KModel
app = FastAPI(
title="Kokoro TTS FastAPI",
middleware=[
Middleware(GZipMiddleware, compresslevel=9) # Add GZip compression
]
)
# ------------------------------------------------------------------------------
# Global Pipeline Instance
# ------------------------------------------------------------------------------
# Create one pipeline instance for the entire app.
model = KModel() # Or however you initialize/load your model
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
#pipeline = KPipeline(lang_code="a",model=model)
voice = "af_heart"
speed = 1.0
pipeline = StreamKPipeline(lang_code="a", model=model, voice=voice, device=device, speed=speed)
# ------------------------------------------------------------------------------
# Helper Functions
# ------------------------------------------------------------------------------
def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
"""
Generate a WAV header for streaming.
Since we don't know the final audio size, we set the data chunk size to a large dummy value.
This header is sent only once at the start of the stream.
"""
bits_per_sample = sample_width * 8
byte_rate = sample_rate * num_channels * sample_width
block_align = num_channels * sample_width
# total file size = 36 + data_size (header is 44 bytes total)
total_size = 36 + data_size
header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
data_chunk_header = struct.pack('<4sI', b'data', data_size)
return header + fmt_chunk + data_chunk_header
def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
"""
Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
"""
# Ensure tensor is on CPU and flatten if necessary.
audio_np = audio_tensor.cpu().numpy()
if audio_np.ndim > 1:
audio_np = audio_np.flatten()
# Scale to int16 range.
audio_int16 = np.int16(audio_np * 32767)
return audio_int16.tobytes()
# ------------------------------------------------------------------------------
# Endpoints
# ------------------------------------------------------------------------------
@app.get("/tts/streaming", summary="Streaming TTS")
def tts_streaming(text: str):
"""
Streaming TTS endpoint that returns a continuous audio stream.
The endpoint yields a WAV header (with a dummy length) for WAV,
then yields encoded audio data for each phoneme as soon as it is generated.
"""
sample_rate = 24000
num_channels = 1
sample_width = 2 # 16-bit PCM
def audio_generator():
# Yield the WAV header first.
header = generate_wav_header(sample_rate, num_channels, sample_width)
yield header
# Process and yield each audio chunk.
try:
for result in pipeline(text): # Use StreamKPipeline
if result.audio is not None:
yield audio_tensor_to_pcm_bytes(result.audio)
else:
print("No audio generated for phoneme")
except Exception as e:
print(f"Error processing: {e}")
yield b'' # Important so that streaming continues.
media_type = "audio/wav"
return StreamingResponse(
audio_generator(),
media_type=media_type,
headers={"Cache-Control": "no-cache"},
)
#Remove full tts
@app.get("/", response_class=HTMLResponse)
def index():
"""
HTML demo page for Kokoro TTS.
This page provides a simple UI to enter text and play synthesized audio from the streaming endpoint.
"""
return """
<!DOCTYPE html>
<html>
<head>
<title>Kokoro TTS Demo</title>
</head>
<body>
<h1>Kokoro TTS Demo</h1>
<textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br><br>
<button onclick="playStreaming()">Play Streaming TTS</button>
<br><br>
<audio id="audio" controls autoplay></audio>
<script>
function playStreaming() {
const text = document.getElementById('text').value;
const audio = document.getElementById('audio');
audio.src = `/tts/streaming?text=${encodeURIComponent(text)}`;
audio.type = 'audio/wav';
audio.play();
}
</script>
</body>
</html>
"""
# ------------------------------------------------------------------------------
# Run with: uvicorn app:app --reload
# ------------------------------------------------------------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True) |