Spaces:
Sleeping
Sleeping
import gradio as gr | |
from rdkit import Chem | |
from rdkit.Chem import Draw, Descriptors, AllChem | |
from rdkit.DataStructs.cDataStructs import ConvertToNumpyArray | |
import numpy as np | |
import xgboost as xgb | |
from PIL import Image | |
# Load the XGBoost model | |
model = xgb.XGBClassifier() | |
model.load_model("xg3.json") | |
# Function to convert SMILES string to descriptors and Lipinski features | |
def predict_smiles(smiles): | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: # Check if the conversion was unsuccessful | |
return None, "Invalid SMILES string. Please enter a valid SMILES." | |
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048) | |
fp_array = np.zeros((1,), dtype=int) | |
ConvertToNumpyArray(fp, fp_array) | |
lipinski_features = np.array([[Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.NumHAcceptors(mol), Descriptors.NumHDonors(mol)]]) | |
# Combine fingerprint and Lipinski features | |
features = np.concatenate([fp_array, lipinski_features.flatten()]) | |
return features, lipinski_features | |
# Updated function to predict from SMILES and visualize Lipinski's features | |
def predict_and_visualize(smiles): | |
features, lipinski_features = predict_smiles(smiles) | |
if features is None: | |
# Return a clear message for invalid SMILES, a placeholder for the features, and None for the image | |
error_message = "Invalid SMILES string. Please enter a valid SMILES." | |
placeholder_features = "<b><u>RDKit estimates</u></b><br>Not applicable due to invalid SMILES input." | |
return error_message, placeholder_features, None | |
# Process valid SMILES | |
molecular_weight, alogp, hba, hbd = lipinski_features.flatten() | |
molecular_weight = round(molecular_weight, 1) | |
alogp = round(alogp, 1) | |
hba = int(hba) | |
hbd = int(hbd) | |
lipinski_features = np.array([[molecular_weight, alogp, hba, hbd]]) | |
prediction = model.predict(features.reshape(1, -1)) | |
result = "drug-like" if prediction == 1 else "not drug-like" | |
mol = Chem.MolFromSmiles(smiles) | |
img = Draw.MolToImage(mol) | |
img = img.resize((800, 800), Image.Resampling.LANCZOS) | |
features_names = ["Molecular Weight", "AlogP", "HBA", "HBD"] | |
lipinski_str = "<b><u>RDKit estimates</u></b><br>" + "<br>".join([f"{name}: {value}" for name, value in zip(features_names, [molecular_weight, alogp, hba, hbd])]) | |
return result, lipinski_str, img | |
# Gradio interface | |
iface = gr.Interface(fn=predict_and_visualize, | |
inputs=gr.Textbox(lines=2, placeholder="Enter SMILES string here..."), | |
outputs=[gr.Text(label="Prediction"), | |
gr.HTML(label="Lipinski's Features"), | |
gr.Image(label="Molecule Visualization")], | |
title="XGBoost Drug-like Classifier", | |
description="This application predicts whether a molecule is drug-like based on its SMILES representation.") | |
if __name__ == "__main__": | |
iface.launch() |