Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from rdkit import Chem
|
3 |
+
from rdkit.Chem import Draw, Descriptors, AllChem
|
4 |
+
from rdkit.DataStructs.cDataStructs import ConvertToNumpyArray
|
5 |
+
import numpy as np
|
6 |
+
import xgboost as xgb
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
# Load the XGBoost model
|
11 |
+
model = xgb.XGBClassifier()
|
12 |
+
model.load_model("xg3.json")
|
13 |
+
|
14 |
+
# Function to convert SMILES string to descriptors and Lipinski features
|
15 |
+
def predict_smiles(smiles):
|
16 |
+
mol = Chem.MolFromSmiles(smiles)
|
17 |
+
if mol is None: # Check if the conversion was unsuccessful
|
18 |
+
return None, "Invalid SMILES string. Please enter a valid SMILES."
|
19 |
+
|
20 |
+
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048)
|
21 |
+
fp_array = np.zeros((1,), dtype=int)
|
22 |
+
ConvertToNumpyArray(fp, fp_array)
|
23 |
+
lipinski_features = np.array([[Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.NumHAcceptors(mol), Descriptors.NumHDonors(mol)]])
|
24 |
+
|
25 |
+
# Combine fingerprint and Lipinski features
|
26 |
+
features = np.concatenate([fp_array, lipinski_features.flatten()])
|
27 |
+
return features, lipinski_features
|
28 |
+
|
29 |
+
# Updated function to predict from SMILES and visualize Lipinski's features
|
30 |
+
def predict_and_visualize(smiles):
|
31 |
+
features, lipinski_features = predict_smiles(smiles)
|
32 |
+
if features is None:
|
33 |
+
# Return a clear message for invalid SMILES, a placeholder for the features, and None for the image
|
34 |
+
error_message = "Invalid SMILES string. Please enter a valid SMILES."
|
35 |
+
placeholder_features = "<b><u>RDKit estimates</u></b><br>Not applicable due to invalid SMILES input."
|
36 |
+
return error_message, placeholder_features, None
|
37 |
+
|
38 |
+
# Process valid SMILES
|
39 |
+
molecular_weight, alogp, hba, hbd = lipinski_features.flatten()
|
40 |
+
molecular_weight = round(molecular_weight, 1)
|
41 |
+
alogp = round(alogp, 1)
|
42 |
+
hba = int(hba)
|
43 |
+
hbd = int(hbd)
|
44 |
+
|
45 |
+
lipinski_features = np.array([[molecular_weight, alogp, hba, hbd]])
|
46 |
+
|
47 |
+
prediction = model.predict(features.reshape(1, -1))
|
48 |
+
result = "drug-like" if prediction == 1 else "not drug-like"
|
49 |
+
|
50 |
+
mol = Chem.MolFromSmiles(smiles)
|
51 |
+
img = Draw.MolToImage(mol)
|
52 |
+
img = img.resize((800, 800), Image.Resampling.LANCZOS)
|
53 |
+
|
54 |
+
features_names = ["Molecular Weight", "AlogP", "HBA", "HBD"]
|
55 |
+
lipinski_str = "<b><u>RDKit estimates</u></b><br>" + "<br>".join([f"{name}: {value}" for name, value in zip(features_names, [molecular_weight, alogp, hba, hbd])])
|
56 |
+
|
57 |
+
return result, lipinski_str, img
|
58 |
+
|
59 |
+
# Gradio interface
|
60 |
+
iface = gr.Interface(fn=predict_and_visualize,
|
61 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter SMILES string here..."),
|
62 |
+
outputs=[gr.Text(label="Prediction"),
|
63 |
+
gr.HTML(label="Lipinski's Features"),
|
64 |
+
gr.Image(label="Molecule Visualization")],
|
65 |
+
title="XGBoost Drug-like Classifier",
|
66 |
+
description="This application predicts whether a molecule is drug-like based on its SMILES representation.")
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
iface.launch()
|