prompt-plus-plus / prompt_refiner.py
baconnier's picture
Update prompt_refiner.py
51d80c4 verified
raw
history blame
7.19 kB
import json
import re
from typing import Optional, Dict, Any
from pydantic import BaseModel, Field, validator
from huggingface_hub import InferenceClient
from huggingface_hub.errors import HfHubHTTPError
from variables import *
class LLMResponse(BaseModel):
initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
refined_prompt: str = Field(..., description="The refined version of the prompt")
explanation_of_refinements: str = Field(..., description="Explanation of the refinements made")
response_content: Optional[Dict[str, Any]] = Field(None, description="Raw response content")
@validator('initial_prompt_evaluation', 'refined_prompt', 'explanation_of_refinements')
def clean_text_fields(cls, v):
if isinstance(v, str):
return v.strip().replace('\\n', '\n').replace('\\"', '"')
return v
class PromptRefiner:
def __init__(self, api_token: str, meta_prompts):
self.client = InferenceClient(token=api_token, timeout=120)
self.meta_prompts = meta_prompts
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
try:
selected_meta_prompt = self.meta_prompts.get(
meta_prompt_choice,
self.meta_prompts["star"]
)
messages = [
{
"role": "system",
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
},
{
"role": "user",
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt)
}
]
response = self.client.chat_completion(
model=prompt_refiner_model,
messages=messages,
max_tokens=3000,
temperature=0.8
)
response_content = response.choices[0].message.content.strip()
result = self._parse_response(response_content)
# Create and validate LLMResponse
llm_response = LLMResponse(**result)
return (
llm_response.initial_prompt_evaluation,
llm_response.refined_prompt,
llm_response.explanation_of_refinements,
llm_response.dict()
)
except HfHubHTTPError as e:
return self._create_error_response("Model timeout. Please try again later.")
except Exception as e:
return self._create_error_response(f"Unexpected error: {str(e)}")
def _create_error_response(self, error_message: str) -> tuple:
error_response = LLMResponse(
initial_prompt_evaluation=f"Error: {error_message}",
refined_prompt="The selected model is currently unavailable.",
explanation_of_refinements="An error occurred during processing.",
response_content={"error": error_message}
)
return (
error_response.initial_prompt_evaluation,
error_response.refined_prompt,
error_response.explanation_of_refinements,
error_response.dict()
)
def _parse_response(self, response_content: str) -> dict:
try:
# First attempt: Try to extract JSON from <json> tags
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
if json_match:
json_str = json_match.group(1)
json_str = re.sub(r'\n\s*', ' ', json_str)
json_str = json_str.replace('"', '\\"')
json_output = json.loads(f'"{json_str}"')
if isinstance(json_output, str):
json_output = json.loads(json_output)
return {
"initial_prompt_evaluation": json_output.get("initial_prompt_evaluation", ""),
"refined_prompt": json_output.get("refined_prompt", ""),
"explanation_of_refinements": json_output.get("explanation_of_refinements", ""),
"response_content": json_output
}
# Second attempt: Try to extract fields using regex
output = {}
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
match = re.search(pattern, response_content, re.DOTALL)
output[key] = match.group(1) if match else ""
output["response_content"] = response_content
return output
except (json.JSONDecodeError, ValueError) as e:
print(f"Error parsing response: {e}")
print(f"Raw content: {response_content}")
return {
"initial_prompt_evaluation": "Error parsing response",
"refined_prompt": "",
"explanation_of_refinements": str(e),
"response_content": str(e)
}
def apply_prompt(self, prompt: str, model: str) -> str:
try:
messages = [
{
"role": "system",
"content": """You are a markdown formatting expert. Format your responses with proper spacing and structure following these rules:
1. Paragraph Spacing:
- Add TWO blank lines between major sections (##)
- Add ONE blank line between subsections (###)
- Add ONE blank line between paragraphs within sections
- Add ONE blank line before and after lists
- Add ONE blank line before and after code blocks
- Add ONE blank line before and after blockquotes
2. Section Formatting:
# Title
## Major Section
[blank line]
Content paragraph 1
[blank line]
Content paragraph 2
[blank line]"""
},
{
"role": "user",
"content": prompt
}
]
response = self.client.chat_completion(
model=model,
messages=messages,
max_tokens=3000,
temperature=0.8,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
full_response += chunk.choices[0].delta.content
return full_response.replace('\n\n', '\n').strip()
except Exception as e:
return f"Error: {str(e)}"