File size: 7,185 Bytes
7ed59a1
 
51d80c4
 
7ed59a1
 
51d80c4
 
 
 
 
 
 
 
 
 
 
 
 
7ed59a1
 
51d80c4
7ed59a1
 
 
 
 
 
 
51d80c4
7ed59a1
51d80c4
7ed59a1
 
 
 
 
 
 
3c725c1
7ed59a1
 
51d80c4
7ed59a1
 
 
 
 
 
 
 
 
 
51d80c4
 
 
7ed59a1
51d80c4
 
 
 
7ed59a1
 
 
51d80c4
7ed59a1
51d80c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ed59a1
 
 
51d80c4
7ed59a1
 
 
 
 
 
 
 
 
51d80c4
 
 
 
 
 
7ed59a1
 
51d80c4
7ed59a1
 
 
 
51d80c4
 
 
7ed59a1
 
 
 
 
 
 
 
 
51d80c4
7ed59a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import json
import re
from typing import Optional, Dict, Any
from pydantic import BaseModel, Field, validator
from huggingface_hub import InferenceClient
from huggingface_hub.errors import HfHubHTTPError
from variables import *

class LLMResponse(BaseModel):
    initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
    refined_prompt: str = Field(..., description="The refined version of the prompt")
    explanation_of_refinements: str = Field(..., description="Explanation of the refinements made")
    response_content: Optional[Dict[str, Any]] = Field(None, description="Raw response content")

    @validator('initial_prompt_evaluation', 'refined_prompt', 'explanation_of_refinements')
    def clean_text_fields(cls, v):
        if isinstance(v, str):
            return v.strip().replace('\\n', '\n').replace('\\"', '"')
        return v

class PromptRefiner:
    def __init__(self, api_token: str, meta_prompts):
        self.client = InferenceClient(token=api_token, timeout=120)
        self.meta_prompts = meta_prompts
        
    def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
        try:
            selected_meta_prompt = self.meta_prompts.get(
                meta_prompt_choice, 
                self.meta_prompts["star"]
            )
            
            messages = [
                {
                    "role": "system", 
                    "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
                },
                {
                    "role": "user", 
                    "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt)
                }
            ]
            
            response = self.client.chat_completion(
                model=prompt_refiner_model,
                messages=messages,
                max_tokens=3000,
                temperature=0.8
            )
            
            response_content = response.choices[0].message.content.strip()
            result = self._parse_response(response_content)
            
            # Create and validate LLMResponse
            llm_response = LLMResponse(**result)
            
            return (
                llm_response.initial_prompt_evaluation,
                llm_response.refined_prompt,
                llm_response.explanation_of_refinements,
                llm_response.dict()
            )

        except HfHubHTTPError as e:
            return self._create_error_response("Model timeout. Please try again later.")
        except Exception as e:
            return self._create_error_response(f"Unexpected error: {str(e)}")

    def _create_error_response(self, error_message: str) -> tuple:
        error_response = LLMResponse(
            initial_prompt_evaluation=f"Error: {error_message}",
            refined_prompt="The selected model is currently unavailable.",
            explanation_of_refinements="An error occurred during processing.",
            response_content={"error": error_message}
        )
        return (
            error_response.initial_prompt_evaluation,
            error_response.refined_prompt,
            error_response.explanation_of_refinements,
            error_response.dict()
        )

    def _parse_response(self, response_content: str) -> dict:
        try:
            # First attempt: Try to extract JSON from <json> tags
            json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
            if json_match:
                json_str = json_match.group(1)
                json_str = re.sub(r'\n\s*', ' ', json_str)
                json_str = json_str.replace('"', '\\"')
                json_output = json.loads(f'"{json_str}"')
                
                if isinstance(json_output, str):
                    json_output = json.loads(json_output)
                
                return {
                    "initial_prompt_evaluation": json_output.get("initial_prompt_evaluation", ""),
                    "refined_prompt": json_output.get("refined_prompt", ""),
                    "explanation_of_refinements": json_output.get("explanation_of_refinements", ""),
                    "response_content": json_output
                }
            
            # Second attempt: Try to extract fields using regex
            output = {}
            for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
                pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
                match = re.search(pattern, response_content, re.DOTALL)
                output[key] = match.group(1) if match else ""
            
            output["response_content"] = response_content
            return output

        except (json.JSONDecodeError, ValueError) as e:
            print(f"Error parsing response: {e}")
            print(f"Raw content: {response_content}")
            return {
                "initial_prompt_evaluation": "Error parsing response",
                "refined_prompt": "",
                "explanation_of_refinements": str(e),
                "response_content": str(e)
            }

    def apply_prompt(self, prompt: str, model: str) -> str:
        try:
            messages = [
                {
                    "role": "system",
                    "content": """You are a markdown formatting expert. Format your responses with proper spacing and structure following these rules:
                        
                        1. Paragraph Spacing:
                        - Add TWO blank lines between major sections (##)
                        - Add ONE blank line between subsections (###)
                        - Add ONE blank line between paragraphs within sections
                        - Add ONE blank line before and after lists
                        - Add ONE blank line before and after code blocks
                        - Add ONE blank line before and after blockquotes
                        
                        2. Section Formatting:
                        # Title
                        
                        ## Major Section
                        
                        [blank line]
                        Content paragraph 1
                        [blank line]
                        Content paragraph 2
                        [blank line]"""
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ]
    
            response = self.client.chat_completion(
                model=model,
                messages=messages,
                max_tokens=3000,
                temperature=0.8,
                stream=True
            )
            
            full_response = ""
            for chunk in response:
                if chunk.choices[0].delta.content is not None:
                    full_response += chunk.choices[0].delta.content
                    
            return full_response.replace('\n\n', '\n').strip()
                
        except Exception as e:
            return f"Error: {str(e)}"