File size: 5,900 Bytes
7ed59a1
 
169974c
51d80c4
7ed59a1
 
169974c
51d80c4
 
 
 
169974c
51d80c4
 
169974c
51d80c4
 
 
 
7ed59a1
 
169974c
7ed59a1
 
 
169974c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51d80c4
169974c
 
 
 
7ed59a1
 
169974c
7ed59a1
169974c
 
 
 
 
 
 
 
88acf81
169974c
88acf81
 
169974c
 
 
 
 
 
 
 
 
 
 
 
 
7ed59a1
88acf81
169974c
7ed59a1
88acf81
7ed59a1
88acf81
169974c
88acf81
 
 
 
 
 
 
 
 
 
169974c
88acf81
 
 
 
 
 
 
169974c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import json
import re
from typing import Optional, Dict, Any, Tuple
from pydantic import BaseModel, Field, validator
from huggingface_hub import InferenceClient
from huggingface_hub.errors import HfHubHTTPError
from variables import meta_prompts, prompt_refiner_model

class LLMResponse(BaseModel):
    initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
    refined_prompt: str = Field(..., description="The refined version of the prompt")
    explanation_of_refinements: str = Field(..., description="Explanation of the refinements made")
    response_content: Optional[Dict[str, Any]] = Field(None, description="Raw response content")

    @validator('initial_prompt_evaluation', 'refined_prompt', 'explanation_of_refinements')
    def clean_text_fields(cls, v):
        if isinstance(v, str):
            return v.strip().replace('\\n', '\n').replace('\\"', '"')
        return v

class PromptRefiner:
    def __init__(self, api_token: str, meta_prompts: dict):
        self.client = InferenceClient(token=api_token, timeout=120)
        self.meta_prompts = meta_prompts

    def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> Tuple[str, str, str, dict]:
        """Refine the given prompt using the selected meta prompt."""
        try:
            selected_meta_prompt = self.meta_prompts.get(
                meta_prompt_choice, 
                self.meta_prompts["star"]
            )
            
            messages = [
                {
                    "role": "system", 
                    "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
                },
                {
                    "role": "user", 
                    "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt)
                }
            ]
            
            response = self.client.chat_completion(
                model=prompt_refiner_model,
                messages=messages,
                max_tokens=3000,
                temperature=0.8
            )
            
            response_content = response.choices[0].message.content.strip()
            result = self._parse_response(response_content)
            
            try:
                llm_response = LLMResponse(**result)
                return (
                    llm_response.initial_prompt_evaluation,
                    llm_response.refined_prompt,
                    llm_response.explanation_of_refinements,
                    llm_response.dict()
                )
            except Exception as e:
                print(f"Error creating LLMResponse: {e}")
                return self._create_error_response(f"Error validating response: {str(e)}")

        except HfHubHTTPError as e:
            return self._create_error_response("Model timeout. Please try again later.")
        except Exception as e:
            return self._create_error_response(f"Unexpected error: {str(e)}")

    def _parse_response(self, response_content: str) -> dict:
        """Parse the LLM response content."""
        try:
            # Try to extract JSON from <json> tags
            json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
            if json_match:
                json_str = json_match.group(1).strip()
                # Clean up the JSON string
                json_str = re.sub(r'\s+', ' ', json_str)
                json_str = json_str.replace('•', '*')  # Replace bullet points
                
                try:
                    parsed_json = json.loads(json_str)
                    if isinstance(parsed_json, str):
                        parsed_json = json.loads(parsed_json)
                    
                    return {
                        "initial_prompt_evaluation": parsed_json.get("initial_prompt_evaluation", ""),
                        "refined_prompt": parsed_json.get("refined_prompt", ""),
                        "explanation_of_refinements": parsed_json.get("explanation_of_refinements", ""),
                        "response_content": parsed_json
                    }
                except json.JSONDecodeError as e:
                    print(f"JSON parsing error: {e}")
                    return self._create_error_dict(str(e))
            
            # Fallback to regex parsing if JSON extraction fails
            return self._parse_with_regex(response_content)

        except Exception as e:
            print(f"Error parsing response: {e}")
            print(f"Raw content: {response_content}")
            return self._create_error_dict(str(e))

    def _parse_with_regex(self, content: str) -> dict:
        """Parse content using regex patterns when JSON parsing fails."""
        output = {}
        for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
            pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
            match = re.search(pattern, content, re.DOTALL)
            output[key] = match.group(1) if match else ""
        
        output["response_content"] = content
        return output

    def _create_error_dict(self, error_message: str) -> dict:
        """Create a standardized error response dictionary."""
        return {
            "initial_prompt_evaluation": f"Error parsing response: {error_message}",
            "refined_prompt": "",
            "explanation_of_refinements": "",
            "response_content": {"error": error_message}
        }

    def _create_error_response(self, error_message: str) -> Tuple[str, str, str, dict]:
        """Create a standardized error response tuple."""
        return (
            f"Error: {error_message}",
            "The selected model is currently unavailable.",
            "An error occurred during processing.",
            {"error": error_message}
        )