Spaces:
Running
Running
Update prompt_refiner.py
Browse files- prompt_refiner.py +75 -142
prompt_refiner.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import json
|
2 |
import re
|
3 |
-
from typing import Optional, Dict, Any
|
4 |
from pydantic import BaseModel, Field, validator
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from huggingface_hub.errors import HfHubHTTPError
|
@@ -9,163 +9,96 @@ from variables import *
|
|
9 |
class LLMResponse(BaseModel):
|
10 |
initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
|
11 |
refined_prompt: str = Field(..., description="The refined version of the prompt")
|
12 |
-
explanation_of_refinements: str = Field(..., description="Explanation of the refinements made")
|
13 |
response_content: Optional[Dict[str, Any]] = Field(None, description="Raw response content")
|
14 |
|
15 |
-
@validator('initial_prompt_evaluation', 'refined_prompt'
|
16 |
def clean_text_fields(cls, v):
|
17 |
if isinstance(v, str):
|
18 |
return v.strip().replace('\\n', '\n').replace('\\"', '"')
|
19 |
return v
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class PromptRefiner:
|
22 |
def __init__(self, api_token: str, meta_prompts):
|
23 |
self.client = InferenceClient(token=api_token, timeout=120)
|
24 |
self.meta_prompts = meta_prompts
|
25 |
-
|
26 |
-
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
|
27 |
-
try:
|
28 |
-
selected_meta_prompt = self.meta_prompts.get(
|
29 |
-
meta_prompt_choice,
|
30 |
-
self.meta_prompts["star"]
|
31 |
-
)
|
32 |
-
|
33 |
-
messages = [
|
34 |
-
{
|
35 |
-
"role": "system",
|
36 |
-
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
|
37 |
-
},
|
38 |
-
{
|
39 |
-
"role": "user",
|
40 |
-
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt)
|
41 |
-
}
|
42 |
-
]
|
43 |
-
|
44 |
-
response = self.client.chat_completion(
|
45 |
-
model=prompt_refiner_model,
|
46 |
-
messages=messages,
|
47 |
-
max_tokens=3000,
|
48 |
-
temperature=0.8
|
49 |
-
)
|
50 |
-
|
51 |
-
response_content = response.choices[0].message.content.strip()
|
52 |
-
result = self._parse_response(response_content)
|
53 |
-
|
54 |
-
# Create and validate LLMResponse
|
55 |
-
llm_response = LLMResponse(**result)
|
56 |
-
|
57 |
-
return (
|
58 |
-
llm_response.initial_prompt_evaluation,
|
59 |
-
llm_response.refined_prompt,
|
60 |
-
llm_response.explanation_of_refinements,
|
61 |
-
llm_response.dict()
|
62 |
-
)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
|
69 |
-
def
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
)
|
76 |
-
return (
|
77 |
-
error_response.initial_prompt_evaluation,
|
78 |
-
error_response.refined_prompt,
|
79 |
-
error_response.explanation_of_refinements,
|
80 |
-
error_response.dict()
|
81 |
-
)
|
82 |
|
83 |
def _parse_response(self, response_content: str) -> dict:
|
84 |
try:
|
85 |
-
# First attempt: Try to
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
# Second attempt: Try to extract fields using regex
|
104 |
-
output = {}
|
105 |
-
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
|
106 |
-
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
107 |
-
match = re.search(pattern, response_content, re.DOTALL)
|
108 |
-
output[key] = match.group(1) if match else ""
|
109 |
-
|
110 |
-
output["response_content"] = response_content
|
111 |
-
return output
|
112 |
|
113 |
-
except
|
114 |
-
print(f"Error parsing response: {e}")
|
115 |
print(f"Raw content: {response_content}")
|
116 |
-
return
|
117 |
-
"initial_prompt_evaluation": "Error parsing response",
|
118 |
-
"refined_prompt": "",
|
119 |
-
"explanation_of_refinements": str(e),
|
120 |
-
"response_content": str(e)
|
121 |
-
}
|
122 |
|
123 |
-
def
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
]
|
154 |
-
|
155 |
-
response = self.client.chat_completion(
|
156 |
-
model=model,
|
157 |
-
messages=messages,
|
158 |
-
max_tokens=3000,
|
159 |
-
temperature=0.8,
|
160 |
-
stream=True
|
161 |
-
)
|
162 |
-
|
163 |
-
full_response = ""
|
164 |
-
for chunk in response:
|
165 |
-
if chunk.choices[0].delta.content is not None:
|
166 |
-
full_response += chunk.choices[0].delta.content
|
167 |
-
|
168 |
-
return full_response.replace('\n\n', '\n').strip()
|
169 |
-
|
170 |
-
except Exception as e:
|
171 |
-
return f"Error: {str(e)}"
|
|
|
1 |
import json
|
2 |
import re
|
3 |
+
from typing import Optional, Dict, Any, Union
|
4 |
from pydantic import BaseModel, Field, validator
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from huggingface_hub.errors import HfHubHTTPError
|
|
|
9 |
class LLMResponse(BaseModel):
|
10 |
initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
|
11 |
refined_prompt: str = Field(..., description="The refined version of the prompt")
|
12 |
+
explanation_of_refinements: Union[str, list] = Field(..., description="Explanation of the refinements made")
|
13 |
response_content: Optional[Dict[str, Any]] = Field(None, description="Raw response content")
|
14 |
|
15 |
+
@validator('initial_prompt_evaluation', 'refined_prompt')
|
16 |
def clean_text_fields(cls, v):
|
17 |
if isinstance(v, str):
|
18 |
return v.strip().replace('\\n', '\n').replace('\\"', '"')
|
19 |
return v
|
20 |
|
21 |
+
@validator('explanation_of_refinements')
|
22 |
+
def clean_refinements(cls, v):
|
23 |
+
if isinstance(v, str):
|
24 |
+
return v.strip().replace('\\n', '\n').replace('\\"', '"')
|
25 |
+
elif isinstance(v, list):
|
26 |
+
return [item.strip().replace('\\n', '\n').replace('\\"', '"') if isinstance(item, str) else item for item in v]
|
27 |
+
return v
|
28 |
+
|
29 |
class PromptRefiner:
|
30 |
def __init__(self, api_token: str, meta_prompts):
|
31 |
self.client = InferenceClient(token=api_token, timeout=120)
|
32 |
self.meta_prompts = meta_prompts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
def _sanitize_json_string(self, json_str: str) -> str:
|
35 |
+
"""Clean and prepare JSON string for parsing."""
|
36 |
+
json_str = json_str.lstrip('\ufeff').strip()
|
37 |
+
json_str = json_str.replace('\n', ' ')
|
38 |
+
json_str = re.sub(r'\s+', ' ', json_str)
|
39 |
+
json_str = json_str.replace('•', '*')
|
40 |
+
return json_str
|
41 |
|
42 |
+
def _extract_json_content(self, content: str) -> str:
|
43 |
+
"""Extract JSON content from between <json> tags."""
|
44 |
+
json_match = re.search(r'<json>\s*(.*?)\s*</json>', content, re.DOTALL)
|
45 |
+
if json_match:
|
46 |
+
return self._sanitize_json_string(json_match.group(1))
|
47 |
+
return content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def _parse_response(self, response_content: str) -> dict:
|
50 |
try:
|
51 |
+
# First attempt: Try to parse the entire content as JSON
|
52 |
+
cleaned_content = self._sanitize_json_string(response_content)
|
53 |
+
try:
|
54 |
+
parsed_json = json.loads(cleaned_content)
|
55 |
+
if isinstance(parsed_json, str):
|
56 |
+
parsed_json = json.loads(parsed_json)
|
57 |
+
return self._normalize_json_output(parsed_json)
|
58 |
+
except json.JSONDecodeError:
|
59 |
+
# Second attempt: Try to extract JSON from <json> tags
|
60 |
+
json_content = self._extract_json_content(response_content)
|
61 |
+
try:
|
62 |
+
parsed_json = json.loads(json_content)
|
63 |
+
if isinstance(parsed_json, str):
|
64 |
+
parsed_json = json.loads(parsed_json)
|
65 |
+
return self._normalize_json_output(parsed_json)
|
66 |
+
except json.JSONDecodeError:
|
67 |
+
# Third attempt: Try to parse using regex
|
68 |
+
return self._parse_with_regex(response_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error parsing response: {str(e)}")
|
72 |
print(f"Raw content: {response_content}")
|
73 |
+
return self._create_error_dict(str(e))
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
def _normalize_json_output(self, json_output: dict) -> dict:
|
76 |
+
"""Normalize JSON output to expected format."""
|
77 |
+
return {
|
78 |
+
"initial_prompt_evaluation": json_output.get("initial_prompt_evaluation", ""),
|
79 |
+
"refined_prompt": json_output.get("refined_prompt", ""),
|
80 |
+
"explanation_of_refinements": json_output.get("explanation_of_refinements", ""),
|
81 |
+
"response_content": json_output
|
82 |
+
}
|
83 |
+
|
84 |
+
def _parse_with_regex(self, content: str) -> dict:
|
85 |
+
"""Parse content using regex patterns."""
|
86 |
+
output = {}
|
87 |
+
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
|
88 |
+
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
89 |
+
match = re.search(pattern, content, re.DOTALL)
|
90 |
+
output[key] = match.group(1) if match else ""
|
91 |
+
|
92 |
+
output["response_content"] = content
|
93 |
+
return output
|
94 |
+
|
95 |
+
def _create_error_dict(self, error_message: str) -> dict:
|
96 |
+
"""Create standardized error response dictionary."""
|
97 |
+
return {
|
98 |
+
"initial_prompt_evaluation": f"Error parsing response: {error_message}",
|
99 |
+
"refined_prompt": "",
|
100 |
+
"explanation_of_refinements": "",
|
101 |
+
"response_content": {"error": error_message}
|
102 |
+
}
|
103 |
+
|
104 |
+
# Rest of your code remains the same...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|