Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,35 @@ import gradio as gr
|
|
5 |
import requests
|
6 |
import tempfile
|
7 |
|
8 |
-
|
9 |
-
model
|
10 |
-
processor
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def get_sample_data():
|
14 |
"""Download sample medical images and data"""
|
@@ -35,7 +60,6 @@ def save_temp_image(img):
|
|
35 |
return temp_file.name
|
36 |
|
37 |
def load_sample_findings():
|
38 |
-
"""Load sample data for findings generation"""
|
39 |
sample = get_sample_data()
|
40 |
return [
|
41 |
save_temp_image(sample["frontal"]),
|
@@ -47,22 +71,22 @@ def load_sample_findings():
|
|
47 |
]
|
48 |
|
49 |
def load_sample_phrase():
|
50 |
-
"""Load sample data for phrase grounding"""
|
51 |
sample = get_sample_data()
|
52 |
return [save_temp_image(sample["frontal"]), sample["phrase"]]
|
53 |
|
54 |
-
def generate_report(frontal_path, lateral_path, indication, technique, comparison,
|
55 |
prior_frontal_path, prior_lateral_path, prior_report, grounding):
|
56 |
-
"""Generate radiology report with
|
|
|
|
|
|
|
57 |
try:
|
58 |
-
# Load images
|
59 |
current_frontal = Image.open(frontal_path)
|
60 |
current_lateral = Image.open(lateral_path)
|
61 |
prior_frontal = Image.open(prior_frontal_path) if prior_frontal_path else None
|
62 |
prior_lateral = Image.open(prior_lateral_path) if prior_lateral_path else None
|
63 |
|
64 |
-
|
65 |
-
processed = processor.format_and_preprocess_reporting_input(
|
66 |
current_frontal=current_frontal,
|
67 |
current_lateral=current_lateral,
|
68 |
prior_frontal=prior_frontal,
|
@@ -73,88 +97,123 @@ def generate_report(frontal_path, lateral_path, indication, technique, compariso
|
|
73 |
prior_report=prior_report or None,
|
74 |
return_tensors="pt",
|
75 |
get_grounding=grounding
|
76 |
-
).to(
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
82 |
|
83 |
-
# Decode and format
|
84 |
prompt_length = processed["input_ids"].shape[-1]
|
85 |
-
decoded = processor.decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
86 |
-
return processor.convert_output_to_plaintext_or_grounded_sequence(decoded.lstrip())
|
87 |
|
88 |
except Exception as e:
|
89 |
-
return f"
|
90 |
|
91 |
def ground_phrase(frontal_path, phrase):
|
92 |
-
"""Perform phrase grounding
|
|
|
|
|
|
|
93 |
try:
|
94 |
frontal = Image.open(frontal_path)
|
95 |
-
processed = processor.format_and_preprocess_phrase_grounding_input(
|
96 |
frontal_image=frontal,
|
97 |
phrase=phrase,
|
98 |
return_tensors="pt"
|
99 |
-
).to(
|
100 |
|
101 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
102 |
|
103 |
prompt_length = processed["input_ids"].shape[-1]
|
104 |
-
decoded = processor.decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
105 |
-
return processor.convert_output_to_plaintext_or_grounded_sequence(decoded)
|
106 |
|
107 |
except Exception as e:
|
108 |
-
return f"
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
with gr.
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
grounding = gr.Checkbox(label="Include Grounding")
|
130 |
-
sample_btn = gr.Button("Load Sample Data")
|
131 |
-
|
132 |
-
with gr.Column():
|
133 |
-
report_output = gr.Textbox(label="Generated Report", lines=10)
|
134 |
-
generate_btn = gr.Button("Generate Report")
|
135 |
-
|
136 |
-
sample_btn.click(load_sample_findings,
|
137 |
-
outputs=[frontal, lateral, indication, technique, comparison,
|
138 |
-
prior_frontal, prior_lateral, prior_report, grounding])
|
139 |
-
generate_btn.click(generate_report,
|
140 |
-
inputs=[frontal, lateral, indication, technique, comparison,
|
141 |
-
prior_frontal, prior_lateral, prior_report, grounding],
|
142 |
-
outputs=report_output)
|
143 |
|
144 |
-
with gr.
|
145 |
-
with gr.
|
146 |
-
with gr.
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
demo.launch()
|
|
|
5 |
import requests
|
6 |
import tempfile
|
7 |
|
8 |
+
MODEL_STATE = {
|
9 |
+
"model": None,
|
10 |
+
"processor": None,
|
11 |
+
"authenticated": False
|
12 |
+
}
|
13 |
+
|
14 |
+
def login(hf_token):
|
15 |
+
"""Authenticate and load the model"""
|
16 |
+
try:
|
17 |
+
MODEL_STATE.update({"model": None, "processor": None, "authenticated": False})
|
18 |
+
|
19 |
+
MODEL_STATE["model"] = AutoModelForCausalLM.from_pretrained(
|
20 |
+
"microsoft/maira-2",
|
21 |
+
trust_remote_code=True,
|
22 |
+
use_auth_token=hf_token
|
23 |
+
)
|
24 |
+
MODEL_STATE["processor"] = AutoProcessor.from_pretrained(
|
25 |
+
"microsoft/maira-2",
|
26 |
+
trust_remote_code=True,
|
27 |
+
use_auth_token=hf_token
|
28 |
+
)
|
29 |
+
|
30 |
+
MODEL_STATE["model"] = MODEL_STATE["model"].eval().to("cpu")
|
31 |
+
MODEL_STATE["authenticated"] = True
|
32 |
+
|
33 |
+
return "🔓 Login successful! You can now use the model."
|
34 |
+
except Exception as e:
|
35 |
+
MODEL_STATE.update({"model": None, "processor": None, "authenticated": False})
|
36 |
+
return f"❌ Login failed: {str(e)}"
|
37 |
|
38 |
def get_sample_data():
|
39 |
"""Download sample medical images and data"""
|
|
|
60 |
return temp_file.name
|
61 |
|
62 |
def load_sample_findings():
|
|
|
63 |
sample = get_sample_data()
|
64 |
return [
|
65 |
save_temp_image(sample["frontal"]),
|
|
|
71 |
]
|
72 |
|
73 |
def load_sample_phrase():
|
|
|
74 |
sample = get_sample_data()
|
75 |
return [save_temp_image(sample["frontal"]), sample["phrase"]]
|
76 |
|
77 |
+
def generate_report(frontal_path, lateral_path, indication, technique, comparison,
|
78 |
prior_frontal_path, prior_lateral_path, prior_report, grounding):
|
79 |
+
"""Generate radiology report with authentication check"""
|
80 |
+
if not MODEL_STATE["authenticated"]:
|
81 |
+
return "⚠️ Please authenticate with your Hugging Face token first!"
|
82 |
+
|
83 |
try:
|
|
|
84 |
current_frontal = Image.open(frontal_path)
|
85 |
current_lateral = Image.open(lateral_path)
|
86 |
prior_frontal = Image.open(prior_frontal_path) if prior_frontal_path else None
|
87 |
prior_lateral = Image.open(prior_lateral_path) if prior_lateral_path else None
|
88 |
|
89 |
+
processed = MODEL_STATE["processor"].format_and_preprocess_reporting_input(
|
|
|
90 |
current_frontal=current_frontal,
|
91 |
current_lateral=current_lateral,
|
92 |
prior_frontal=prior_frontal,
|
|
|
97 |
prior_report=prior_report or None,
|
98 |
return_tensors="pt",
|
99 |
get_grounding=grounding
|
100 |
+
).to("cpu")
|
101 |
|
102 |
+
outputs = MODEL_STATE["model"].generate(
|
103 |
+
**processed,
|
104 |
+
max_new_tokens=450 if grounding else 300,
|
105 |
+
use_cache=True
|
106 |
+
)
|
107 |
|
|
|
108 |
prompt_length = processed["input_ids"].shape[-1]
|
109 |
+
decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
110 |
+
return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded.lstrip())
|
111 |
|
112 |
except Exception as e:
|
113 |
+
return f"❌ Generation error: {str(e)}"
|
114 |
|
115 |
def ground_phrase(frontal_path, phrase):
|
116 |
+
"""Perform phrase grounding with authentication check"""
|
117 |
+
if not MODEL_STATE["authenticated"]:
|
118 |
+
return "⚠️ Please authenticate with your Hugging Face token first!"
|
119 |
+
|
120 |
try:
|
121 |
frontal = Image.open(frontal_path)
|
122 |
+
processed = MODEL_STATE["processor"].format_and_preprocess_phrase_grounding_input(
|
123 |
frontal_image=frontal,
|
124 |
phrase=phrase,
|
125 |
return_tensors="pt"
|
126 |
+
).to("cpu")
|
127 |
|
128 |
+
outputs = MODEL_STATE["model"].generate(
|
129 |
+
**processed,
|
130 |
+
max_new_tokens=150,
|
131 |
+
use_cache=True
|
132 |
+
)
|
133 |
|
134 |
prompt_length = processed["input_ids"].shape[-1]
|
135 |
+
decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
136 |
+
return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded)
|
137 |
|
138 |
except Exception as e:
|
139 |
+
return f"❌ Grounding error: {str(e)}"
|
140 |
|
141 |
+
with gr.Blocks(title="MAIRA-2 Medical Assistant") as demo:
|
142 |
+
gr.Markdown("""# MAIRA-2 Medical Assistant
|
143 |
+
**Authentication required** - You need a Hugging Face account and access token to use this model.
|
144 |
+
1. Get your access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
|
145 |
+
2. Request model access at [https://huggingface.co/microsoft/maira-2](https://huggingface.co/microsoft/maira-2)
|
146 |
+
3. Paste your token below to begin
|
147 |
+
""")
|
148 |
|
149 |
+
with gr.Row():
|
150 |
+
hf_token = gr.Textbox(
|
151 |
+
label="Hugging Face Token",
|
152 |
+
placeholder="hf_xxxxxxxxxxxxxxxxxxxx",
|
153 |
+
type="password"
|
154 |
+
)
|
155 |
+
login_btn = gr.Button("Authenticate")
|
156 |
+
login_status = gr.Textbox(label="Authentication Status", interactive=False)
|
157 |
+
|
158 |
+
login_btn.click(
|
159 |
+
login,
|
160 |
+
inputs=hf_token,
|
161 |
+
outputs=login_status
|
162 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
with gr.Tabs():
|
165 |
+
with gr.Tab("Report Generation"):
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column():
|
168 |
+
gr.Markdown("## Current Study")
|
169 |
+
frontal = gr.Image(label="Frontal View", type="filepath")
|
170 |
+
lateral = gr.Image(label="Lateral View", type="filepath")
|
171 |
+
indication = gr.Textbox(label="Clinical Indication")
|
172 |
+
technique = gr.Textbox(label="Imaging Technique")
|
173 |
+
comparison = gr.Textbox(label="Comparison")
|
174 |
+
|
175 |
+
gr.Markdown("## Prior Study (Optional)")
|
176 |
+
prior_frontal = gr.Image(label="Prior Frontal View", type="filepath")
|
177 |
+
prior_lateral = gr.Image(label="Prior Lateral View", type="filepath")
|
178 |
+
prior_report = gr.Textbox(label="Prior Report")
|
179 |
+
|
180 |
+
grounding = gr.Checkbox(label="Include Grounding")
|
181 |
+
sample_btn = gr.Button("Load Sample Data")
|
182 |
+
|
183 |
+
with gr.Column():
|
184 |
+
report_output = gr.Textbox(label="Generated Report", lines=10)
|
185 |
+
generate_btn = gr.Button("Generate Report")
|
186 |
+
|
187 |
+
sample_btn.click(
|
188 |
+
load_sample_findings,
|
189 |
+
outputs=[frontal, lateral, indication, technique, comparison,
|
190 |
+
prior_frontal, prior_lateral, prior_report, grounding]
|
191 |
+
)
|
192 |
+
generate_btn.click(
|
193 |
+
generate_report,
|
194 |
+
inputs=[frontal, lateral, indication, technique, comparison,
|
195 |
+
prior_frontal, prior_lateral, prior_report, grounding],
|
196 |
+
outputs=report_output
|
197 |
+
)
|
198 |
|
199 |
+
with gr.Tab("Phrase Grounding"):
|
200 |
+
with gr.Row():
|
201 |
+
with gr.Column():
|
202 |
+
pg_frontal = gr.Image(label="Frontal View", type="filepath")
|
203 |
+
phrase = gr.Textbox(label="Phrase to Ground")
|
204 |
+
pg_sample_btn = gr.Button("Load Sample Data")
|
205 |
+
with gr.Column():
|
206 |
+
pg_output = gr.Textbox(label="Grounding Result", lines=3)
|
207 |
+
pg_btn = gr.Button("Find Phrase")
|
208 |
+
|
209 |
+
pg_sample_btn.click(
|
210 |
+
load_sample_phrase,
|
211 |
+
outputs=[pg_frontal, phrase]
|
212 |
+
)
|
213 |
+
pg_btn.click(
|
214 |
+
ground_phrase,
|
215 |
+
inputs=[pg_frontal, phrase],
|
216 |
+
outputs=pg_output
|
217 |
+
)
|
218 |
|
219 |
demo.launch()
|