ayyuce commited on
Commit
2056352
·
verified ·
1 Parent(s): 13199ff

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +160 -0
app.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoProcessor
2
+ from PIL import Image
3
+ import torch
4
+ import gradio as gr
5
+ import requests
6
+ import tempfile
7
+
8
+ device = torch.device("cpu")
9
+ model = AutoModelForCausalLM.from_pretrained("microsoft/maira-2", trust_remote_code=True)
10
+ processor = AutoProcessor.from_pretrained("microsoft/maira-2", trust_remote_code=True)
11
+ model = model.eval().to(device)
12
+
13
+ def get_sample_data():
14
+ """Download sample medical images and data"""
15
+ frontal_url = "https://openi.nlm.nih.gov/imgs/512/145/145/CXR145_IM-0290-1001.png"
16
+ lateral_url = "https://openi.nlm.nih.gov/imgs/512/145/145/CXR145_IM-0290-2001.png"
17
+
18
+ def download_image(url):
19
+ response = requests.get(url, headers={"User-Agent": "MAIRA-2"}, stream=True)
20
+ return Image.open(response.raw)
21
+
22
+ return {
23
+ "frontal": download_image(frontal_url),
24
+ "lateral": download_image(lateral_url),
25
+ "indication": "Dyspnea.",
26
+ "technique": "PA and lateral views of the chest.",
27
+ "comparison": "None.",
28
+ "phrase": "Pleural effusion."
29
+ }
30
+
31
+ def save_temp_image(img):
32
+ """Save PIL image to temporary file"""
33
+ temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
34
+ img.save(temp_file.name)
35
+ return temp_file.name
36
+
37
+ def load_sample_findings():
38
+ """Load sample data for findings generation"""
39
+ sample = get_sample_data()
40
+ return [
41
+ save_temp_image(sample["frontal"]),
42
+ save_temp_image(sample["lateral"]),
43
+ sample["indication"],
44
+ sample["technique"],
45
+ sample["comparison"],
46
+ None, None, None, False
47
+ ]
48
+
49
+ def load_sample_phrase():
50
+ """Load sample data for phrase grounding"""
51
+ sample = get_sample_data()
52
+ return [save_temp_image(sample["frontal"]), sample["phrase"]]
53
+
54
+ def generate_report(frontal_path, lateral_path, indication, technique, comparison,
55
+ prior_frontal_path, prior_lateral_path, prior_report, grounding):
56
+ """Generate radiology report with optional grounding"""
57
+ try:
58
+ # Load images
59
+ current_frontal = Image.open(frontal_path)
60
+ current_lateral = Image.open(lateral_path)
61
+ prior_frontal = Image.open(prior_frontal_path) if prior_frontal_path else None
62
+ prior_lateral = Image.open(prior_lateral_path) if prior_lateral_path else None
63
+
64
+ # Process inputs
65
+ processed = processor.format_and_preprocess_reporting_input(
66
+ current_frontal=current_frontal,
67
+ current_lateral=current_lateral,
68
+ prior_frontal=prior_frontal,
69
+ prior_lateral=prior_lateral,
70
+ indication=indication,
71
+ technique=technique,
72
+ comparison=comparison,
73
+ prior_report=prior_report or None,
74
+ return_tensors="pt",
75
+ get_grounding=grounding
76
+ ).to(device)
77
+
78
+ # Generate report
79
+ outputs = model.generate(**processed,
80
+ max_new_tokens=450 if grounding else 300,
81
+ use_cache=True)
82
+
83
+ # Decode and format
84
+ prompt_length = processed["input_ids"].shape[-1]
85
+ decoded = processor.decode(outputs[0][prompt_length:], skip_special_tokens=True)
86
+ return processor.convert_output_to_plaintext_or_grounded_sequence(decoded.lstrip())
87
+
88
+ except Exception as e:
89
+ return f"Error: {str(e)}"
90
+
91
+ def ground_phrase(frontal_path, phrase):
92
+ """Perform phrase grounding on image"""
93
+ try:
94
+ frontal = Image.open(frontal_path)
95
+ processed = processor.format_and_preprocess_phrase_grounding_input(
96
+ frontal_image=frontal,
97
+ phrase=phrase,
98
+ return_tensors="pt"
99
+ ).to(device)
100
+
101
+ outputs = model.generate(**processed, max_new_tokens=150, use_cache=True)
102
+
103
+ prompt_length = processed["input_ids"].shape[-1]
104
+ decoded = processor.decode(outputs[0][prompt_length:], skip_special_tokens=True)
105
+ return processor.convert_output_to_plaintext_or_grounded_sequence(decoded)
106
+
107
+ except Exception as e:
108
+ return f"Error: {str(e)}"
109
+
110
+ # Gradio UI
111
+ with gr.Blocks(title="MAIRA-2 Medical Imaging Assistant") as demo:
112
+ gr.Markdown("# MAIRA-2 Medical Imaging Assistant\nAI-powered radiology report generation and phrase grounding")
113
+
114
+ with gr.Tab("Report Generation"):
115
+ with gr.Row():
116
+ with gr.Column():
117
+ gr.Markdown("## Current Study")
118
+ frontal = gr.Image(label="Frontal View", type="filepath")
119
+ lateral = gr.Image(label="Lateral View", type="filepath")
120
+ indication = gr.Textbox(label="Clinical Indication")
121
+ technique = gr.Textbox(label="Imaging Technique")
122
+ comparison = gr.Textbox(label="Comparison")
123
+
124
+ gr.Markdown("## Prior Study (Optional)")
125
+ prior_frontal = gr.Image(label="Prior Frontal View", type="filepath")
126
+ prior_lateral = gr.Image(label="Prior Lateral View", type="filepath")
127
+ prior_report = gr.Textbox(label="Prior Report")
128
+
129
+ grounding = gr.Checkbox(label="Include Grounding")
130
+ sample_btn = gr.Button("Load Sample Data")
131
+
132
+ with gr.Column():
133
+ report_output = gr.Textbox(label="Generated Report", lines=10)
134
+ generate_btn = gr.Button("Generate Report")
135
+
136
+ sample_btn.click(load_sample_findings,
137
+ outputs=[frontal, lateral, indication, technique, comparison,
138
+ prior_frontal, prior_lateral, prior_report, grounding])
139
+ generate_btn.click(generate_report,
140
+ inputs=[frontal, lateral, indication, technique, comparison,
141
+ prior_frontal, prior_lateral, prior_report, grounding],
142
+ outputs=report_output)
143
+
144
+ with gr.Tab("Phrase Grounding"):
145
+ with gr.Row():
146
+ with gr.Column():
147
+ pg_frontal = gr.Image(label="Frontal View", type="filepath")
148
+ phrase = gr.Textbox(label="Phrase to Ground")
149
+ pg_sample_btn = gr.Button("Load Sample Data")
150
+ with gr.Column():
151
+ pg_output = gr.Textbox(label="Grounding Result", lines=3)
152
+ pg_btn = gr.Button("Find Phrase")
153
+
154
+ pg_sample_btn.click(load_sample_phrase,
155
+ outputs=[pg_frontal, phrase])
156
+ pg_btn.click(ground_phrase,
157
+ inputs=[pg_frontal, phrase],
158
+ outputs=pg_output)
159
+
160
+ demo.launch()