Update app.py
#1
by
ayush200399391001
- opened
app.py
CHANGED
@@ -1,258 +1,269 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
|
|
|
|
3 |
from groq import Groq
|
4 |
from datetime import datetime
|
5 |
|
6 |
-
# Set page config
|
7 |
st.set_page_config(page_title="AI Medical Consultancy", layout="wide")
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
--accent: #f1c40f; /* Yellow */
|
17 |
-
--success: #2ecc71; /* Positive actions */
|
18 |
-
--light: #ffffff; /* White backgrounds */
|
19 |
-
--dark: #000000; /* Black text/elements */
|
20 |
-
}
|
21 |
-
/* Main container styling */
|
22 |
-
.stApp {
|
23 |
-
background: linear-gradient(135deg, #3498db 0%, #e0e0e0 100%);
|
24 |
-
font-family: 'Arial', sans-serif;
|
25 |
-
}
|
26 |
-
/* Headers styling */
|
27 |
-
h1, h2, h3 {
|
28 |
-
color: var(--dark) !important;
|
29 |
-
border-bottom: 3px solid var(--primary);
|
30 |
-
padding-bottom: 0.3em;
|
31 |
-
}
|
32 |
-
/* Form containers */
|
33 |
-
.stForm {
|
34 |
-
background: #000000;
|
35 |
-
border: 1px solid rgba(44, 62, 80, 0.2);
|
36 |
-
border-radius: 15px;
|
37 |
-
padding: 2rem;
|
38 |
-
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.12);
|
39 |
-
margin: 1rem 0;
|
40 |
-
}
|
41 |
-
/* Input fields */
|
42 |
-
.stTextInput input, .stNumberInput input,
|
43 |
-
.stSelectbox select, .stTextArea textarea {
|
44 |
-
border: 2px solid #00FFFF !important;
|
45 |
-
border-radius: 10px !important;
|
46 |
-
padding: 1rem !important;
|
47 |
-
background: #00FFFF !important;
|
48 |
-
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
|
49 |
-
color: var(--dark) !important;
|
50 |
-
}
|
51 |
-
.stTextInput input:focus, .stNumberInput input:focus,
|
52 |
-
.stSelectbox select:focus, .stTextArea textarea:focus {
|
53 |
-
border-color: var(--primary) !important;
|
54 |
-
box-shadow: 0 0 12px rgba(52, 152, 219, 0.2) !important;
|
55 |
-
background: white !important;
|
56 |
-
color: var(--dark) !important;
|
57 |
-
}
|
58 |
-
/* Buttons styling */
|
59 |
-
.stButton>button {
|
60 |
-
background: linear-gradient(135deg, var(--primary) 0%, var(--accent) 100%) !important;
|
61 |
-
color: var(--dark) !important;
|
62 |
-
border: none !important;
|
63 |
-
border-radius: 10px !important;
|
64 |
-
padding: 1rem 2rem !important;
|
65 |
-
font-size: 1rem !important;
|
66 |
-
transition: all 0.3s ease;
|
67 |
-
position: relative;
|
68 |
-
overflow: hidden;
|
69 |
-
}
|
70 |
-
.stButton>button:hover {
|
71 |
-
transform: translateY(-2px);
|
72 |
-
box-shadow: 0 8px 15px rgba(52, 152, 219, 0.3);
|
73 |
-
opacity: 0.95;
|
74 |
-
}
|
75 |
-
.stButton>button:active {
|
76 |
-
transform: translateY(0);
|
77 |
-
opacity: 1;
|
78 |
-
}
|
79 |
-
/* Progress indicator */
|
80 |
-
.progress-bar {
|
81 |
-
display: flex;
|
82 |
-
justify-content: space-between;
|
83 |
-
margin: 2rem 0;
|
84 |
-
padding: 1rem;
|
85 |
-
background: rgba(255, 255, 255, 0.9);
|
86 |
-
border-radius: 10px;
|
87 |
-
color: var(--dark) !important;
|
88 |
-
}
|
89 |
-
.step {
|
90 |
-
flex: 1;
|
91 |
-
text-align: center;
|
92 |
-
padding: 1rem;
|
93 |
-
font-weight: 600;
|
94 |
-
color: #95a5a6;
|
95 |
-
position: relative;
|
96 |
-
}
|
97 |
-
.step.active {
|
98 |
-
color: var(--primary);
|
99 |
-
}
|
100 |
-
.step.active:after {
|
101 |
-
content: '';
|
102 |
-
position: absolute;
|
103 |
-
bottom: -1px;
|
104 |
-
left: 50%;
|
105 |
-
transform: translateX(-50%);
|
106 |
-
width: 40%;
|
107 |
-
height: 3px;
|
108 |
-
background: var(--primary);
|
109 |
-
}
|
110 |
-
/* Chat bubbles */
|
111 |
-
.dr-message {
|
112 |
-
background: linear-gradient(135deg, var(--primary) 0%, #2980b9 100%);
|
113 |
-
color: white;
|
114 |
-
border-radius: 20px 20px 20px 4px;
|
115 |
-
padding: 1.2rem 1.5rem;
|
116 |
-
margin: 1rem 0;
|
117 |
-
max-width: 80%;
|
118 |
-
width: fit-content;
|
119 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
120 |
-
}
|
121 |
-
.user-message {
|
122 |
-
background: linear-gradient(135deg, #f1c40f 0%, #e1b800 100%);
|
123 |
-
margin-left: auto;
|
124 |
-
border-radius: 20px 20px 4px 20px;
|
125 |
-
color: var(--dark) !important;
|
126 |
-
}
|
127 |
-
/* Emergency alert */
|
128 |
-
.emergency-alert {
|
129 |
-
background: linear-gradient(135deg, var(--accent) 0%, #c0392b 100%);
|
130 |
-
color: white;
|
131 |
-
padding: 2rem;
|
132 |
-
border-radius: 15px;
|
133 |
-
animation: pulse 1.5s infinite;
|
134 |
-
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
135 |
-
}
|
136 |
-
@keyframes pulse {
|
137 |
-
0% { transform: scale(1); }
|
138 |
-
50% { transform: scale(1.02); }
|
139 |
-
100% { transform: scale(1); }
|
140 |
-
}
|
141 |
-
/* Download button */
|
142 |
-
.download-btn {
|
143 |
-
background: linear-gradient(135deg, var(--success) 0%, #27ae60 100%) !important;
|
144 |
-
}
|
145 |
-
/* Enhanced Data Visualization Contrast */
|
146 |
-
.stDataFrame {
|
147 |
-
border: 1px solid rgba(0, 0, 0, 0.1);
|
148 |
-
border-radius: 12px;
|
149 |
-
overflow: hidden;
|
150 |
-
background: #f0f0f0;
|
151 |
-
color: var(--dark) !important;
|
152 |
-
}
|
153 |
-
/* Tabbed Interface Styling */
|
154 |
-
.stTabs [role="tablist"] {
|
155 |
-
gap: 10px;
|
156 |
-
padding: 8px;
|
157 |
-
background: rgba(240, 240, 240, 0.9);
|
158 |
-
border-radius: 12px;
|
159 |
-
color: var(--dark) !important;
|
160 |
-
}
|
161 |
-
.stTabs [role="tab"] {
|
162 |
-
background: #ffffff !important;
|
163 |
-
border-radius: 8px !important;
|
164 |
-
transition: all 0.3s ease;
|
165 |
-
color: var(--dark) !important;
|
166 |
-
}
|
167 |
-
.stTabs [role="tab"][aria-selected="true"] {
|
168 |
-
background: var(--primary) !important;
|
169 |
-
color: white !important;
|
170 |
-
transform: scale(1.05);
|
171 |
-
}
|
172 |
-
</style>
|
173 |
-
""", unsafe_allow_html=True)
|
174 |
|
|
|
175 |
|
176 |
# Initialize session state variables
|
177 |
if 'current_step' not in st.session_state:
|
178 |
st.session_state.current_step = 0
|
179 |
if 'symptom_details' not in st.session_state:
|
180 |
-
st.session_state.symptom_details = []
|
181 |
if 'patient_info' not in st.session_state:
|
182 |
st.session_state.patient_info = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
def initialize_groq_client():
|
185 |
try:
|
186 |
-
|
187 |
-
api_key = None
|
188 |
-
try:
|
189 |
-
api_key = st.secrets.get("GROQ_API_KEY", os.getenv("GROQ_API_KEY"))
|
190 |
-
except FileNotFoundError:
|
191 |
-
st.warning("No `secrets.toml` file found. Please create one in the `.streamlit` folder.")
|
192 |
-
|
193 |
-
# If not found, prompt the user to enter it
|
194 |
if not api_key:
|
195 |
-
api_key = st.text_input("Enter
|
196 |
-
if not api_key:
|
197 |
-
st.warning("Please provide a valid Groq API key to proceed.")
|
198 |
-
return False
|
199 |
|
200 |
-
|
201 |
-
client = Groq(api_key=api_key)
|
202 |
-
st.session_state.client = client
|
203 |
return True
|
204 |
except Exception as e:
|
205 |
-
st.error(f"
|
206 |
return False
|
207 |
|
208 |
def symptom_interrogation_step():
|
209 |
client = st.session_state.client
|
210 |
main_symptom = st.session_state.patient_info['main_symptom']
|
211 |
-
step = len(st.session_state.symptom_details)
|
212 |
|
213 |
if step == 0:
|
214 |
-
# First question: ask about the main symptom
|
215 |
medical_focus = {
|
216 |
'pain': "location/radiation/provoking factors",
|
217 |
'fever': "pattern/associated symptoms/response to meds",
|
218 |
'gi': "bowel changes/ingestion timing/associated symptoms",
|
219 |
'respiratory': "exertion relationship/sputum/triggers"
|
220 |
}
|
221 |
-
focus = medical_focus.get(main_symptom.lower(),
|
222 |
-
"temporal pattern/severity progression/associated symptoms")
|
223 |
-
|
224 |
prompt = f"""As an ER physician, ask ONE high-yield question about {main_symptom}
|
225 |
-
focusing on {focus}
|
226 |
-
Start by asking ONE specific follow-up question about their initial symptom: {main_symptom}.
|
227 |
-
Ask only one question at a time to avoid overwhelming the patient.
|
228 |
-
Keep your language clear, professional, and easy to understand.
|
229 |
-
|
230 |
-
Dont display possibe symptoms or why you are asking questions."""
|
231 |
-
|
232 |
-
messages = [
|
233 |
-
{"role": "system", "content": "Ask focused clinical questions. One at a time."},
|
234 |
-
{"role": "user", "content": prompt}
|
235 |
-
]
|
236 |
else:
|
237 |
-
# Subsequent questions: use the last Q&A to generate the next question
|
238 |
last_qa = st.session_state.symptom_details[-1]
|
239 |
-
prompt = f"""
|
240 |
-
|
241 |
-
possible causes of {main_symptom}. Consider red flags and likelihood."""
|
242 |
-
messages = [{"role": "user", "content": prompt}]
|
243 |
|
244 |
try:
|
245 |
response = client.chat.completions.create(
|
246 |
-
messages=
|
247 |
model="mixtral-8x7b-32768",
|
248 |
temperature=0.3
|
249 |
)
|
250 |
question = response.choices[0].message.content.strip()
|
251 |
-
if not question.endswith('?'):
|
252 |
-
question += '?'
|
253 |
st.session_state.current_question = question
|
254 |
except Exception as e:
|
255 |
-
st.error(f"
|
256 |
st.stop()
|
257 |
|
258 |
def handle_symptom_interrogation():
|
@@ -264,7 +275,7 @@ def handle_symptom_interrogation():
|
|
264 |
|
265 |
if 'current_question' in st.session_state:
|
266 |
with st.form("symptom_qna"):
|
267 |
-
st.markdown(f'<div class="dr-message"
|
268 |
answer = st.text_input("Your answer:", key=f"answer_{len(st.session_state.symptom_details)}")
|
269 |
|
270 |
if st.form_submit_button("Next"):
|
@@ -274,31 +285,27 @@ def handle_symptom_interrogation():
|
|
274 |
"answer": answer
|
275 |
})
|
276 |
del st.session_state.current_question
|
277 |
-
|
278 |
-
#
|
279 |
if len(st.session_state.symptom_details) >= 3:
|
280 |
last_answer = st.session_state.symptom_details[-1]['answer']
|
281 |
try:
|
282 |
urgency_check = st.session_state.client.chat.completions.create(
|
283 |
-
messages=[{"role": "user", "content":
|
284 |
-
f"Does '{last_answer}' indicate immediate emergency? Yes/No"}],
|
285 |
model="mixtral-8x7b-32768",
|
286 |
temperature=0
|
287 |
).choices[0].message.content
|
288 |
-
|
289 |
if 'YES' in urgency_check.upper():
|
290 |
-
st.markdown('<div class="emergency-alert">π¨ Emergency
|
291 |
st.session_state.current_step = 4
|
292 |
return
|
293 |
-
except
|
294 |
-
|
295 |
-
|
296 |
if len(st.session_state.symptom_details) < 7:
|
297 |
st.session_state.current_step = 1
|
298 |
-
st.rerun()
|
299 |
else:
|
300 |
st.session_state.current_step = 3
|
301 |
-
|
302 |
else:
|
303 |
st.warning("Please provide an answer")
|
304 |
|
@@ -311,11 +318,11 @@ def collect_basic_info():
|
|
311 |
st.session_state.patient_info['main_symptom'] = st.text_input("Main Symptom")
|
312 |
|
313 |
if st.form_submit_button("Next"):
|
314 |
-
if all(
|
315 |
st.session_state.current_step = 1
|
316 |
st.rerun()
|
317 |
else:
|
318 |
-
st.warning("Please fill all
|
319 |
|
320 |
def collect_medical_history():
|
321 |
st.header("Medical History")
|
@@ -331,116 +338,213 @@ def collect_medical_history():
|
|
331 |
st.rerun()
|
332 |
|
333 |
def generate_risk_assessment():
|
334 |
-
st.header("
|
335 |
|
336 |
try:
|
337 |
-
|
338 |
-
|
339 |
-
for q in st.session_state.symptom_details]
|
340 |
-
)
|
341 |
-
|
342 |
patient_profile = f"""
|
343 |
-
**Patient Profile**
|
344 |
Name: {st.session_state.patient_info['name']}
|
345 |
Age: {st.session_state.patient_info['age']}
|
346 |
Gender: {st.session_state.patient_info['gender']}
|
|
|
347 |
|
348 |
-
|
349 |
-
{st.session_state.patient_info['main_symptom']}
|
350 |
-
|
351 |
-
**Symptom Interrogation**
|
352 |
{symptom_log}
|
353 |
|
354 |
-
|
355 |
-
{st.session_state.patient_info.get('
|
356 |
-
|
357 |
-
**Current Medications**
|
358 |
-
{st.session_state.patient_info.get('medications', 'None')}
|
359 |
-
|
360 |
-
**Allergies**
|
361 |
-
{st.session_state.patient_info.get('allergies', 'None reported')}
|
362 |
-
|
363 |
-
**Recent Context**
|
364 |
-
Last Meal: {st.session_state.patient_info.get('last_meal', 'Unknown')}
|
365 |
-
Recent Travel: {st.session_state.patient_info.get('recent_travel', 'None')}
|
366 |
"""
|
367 |
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
3. Output *EXCLUSIVELY* in this format with NO additional text or explanations:
|
372 |
-
[Age]-year-old [gender] with [specific, present symptoms].
|
373 |
-
Example Output:
|
374 |
-
"45-year-old man with severe chest pain radiating to the jaw"
|
375 |
-
Your Output:"""
|
376 |
-
|
377 |
-
|
378 |
-
response = st.session_state.client.chat.completions.create(
|
379 |
-
messages=[
|
380 |
-
{"role": "system", "content": "You are a medical AI that outputs ONLY patient descriptions."},
|
381 |
-
{"role": "user", "content": analysis_prompt}
|
382 |
-
],
|
383 |
-
model="mixtral-8x7b-32768",
|
384 |
-
temperature=0.3,
|
385 |
-
max_tokens=100
|
386 |
-
)
|
387 |
-
|
388 |
-
risk_prompt = response.choices[0].message.content.strip('"')
|
389 |
|
390 |
-
|
391 |
-
st.
|
392 |
-
|
393 |
-
# Create download button
|
394 |
-
timestamp = datetime.now().strftime('%Y%m%d%H%M')
|
395 |
-
filename = f"{st.session_state.patient_info['name'].replace(' ', '_')}_assessment_{timestamp}.txt"
|
396 |
-
st.download_button(
|
397 |
-
label="Download Assessment",
|
398 |
-
data=risk_prompt,
|
399 |
-
file_name=filename,
|
400 |
-
mime="text/plain"
|
401 |
-
)
|
402 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
except Exception as e:
|
404 |
-
st.error(f"Error
|
405 |
|
406 |
-
def
|
407 |
-
st.
|
408 |
|
409 |
-
#
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
</div>
|
418 |
-
"""
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
)
|
428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
|
|
430 |
if not initialize_groq_client():
|
|
|
431 |
return
|
|
|
|
|
|
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
|
445 |
-
if
|
446 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
from groq import Groq
|
6 |
from datetime import datetime
|
7 |
|
8 |
+
# Set page config
|
9 |
st.set_page_config(page_title="AI Medical Consultancy", layout="wide")
|
10 |
|
11 |
+
# Load custom CSS
|
12 |
+
def load_css():
|
13 |
+
try:
|
14 |
+
with open("style.css") as f:
|
15 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
16 |
+
except FileNotFoundError:
|
17 |
+
st.warning("CSS file not found. Please ensure 'style.css' is in the directory.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
load_css()
|
20 |
|
21 |
# Initialize session state variables
|
22 |
if 'current_step' not in st.session_state:
|
23 |
st.session_state.current_step = 0
|
24 |
if 'symptom_details' not in st.session_state:
|
25 |
+
st.session_state.symptom_details = []
|
26 |
if 'patient_info' not in st.session_state:
|
27 |
st.session_state.patient_info = {}
|
28 |
+
if 'appointment_details' not in st.session_state:
|
29 |
+
st.session_state.appointment_details = None
|
30 |
+
if 'appointment_summary' not in st.session_state:
|
31 |
+
st.session_state.appointment_summary = None
|
32 |
+
if 'analysis_results' not in st.session_state:
|
33 |
+
st.session_state.analysis_results = None
|
34 |
+
|
35 |
+
class MedicalAnalysisSystem:
|
36 |
+
def _init_(self, dataset_path):
|
37 |
+
try:
|
38 |
+
self.data = pd.read_csv(dataset_path)
|
39 |
+
print("Dataset Columns:", self.data.columns.tolist()) # Debug
|
40 |
+
print("Sample Data:\n", self.data.head()) # Debug
|
41 |
+
|
42 |
+
# Clean data - remove placeholder rows
|
43 |
+
self.data = self.data[~self.data['Symptom'].str.contains('Symptom|Condition', case=False)]
|
44 |
+
|
45 |
+
self.data['Risk Score'] = pd.to_numeric(self.data['Risk Score'], errors='coerce')
|
46 |
+
# Handle missing values
|
47 |
+
self.data['Risk Score'] = self.data['Risk Score'].fillna(0)
|
48 |
+
|
49 |
+
# Calculate MAX_RISK_SCORE dynamically
|
50 |
+
symptom_max_risk = self.data.groupby('Symptom')['Risk Score'].max().sum()
|
51 |
+
max_age = 120
|
52 |
+
max_age_risk = (max_age - 40) * 0.05 if max_age > 40 else 0
|
53 |
+
self.MAX_RISK_SCORE = symptom_max_risk + max_age_risk
|
54 |
+
|
55 |
+
self.local_messages = []
|
56 |
+
self.severity_mapping = {
|
57 |
+
'Mild': ['mild', 'slight', 'minor', 'low grade'],
|
58 |
+
'Moderate': ['moderate', 'medium', 'average'],
|
59 |
+
'Severe': ['severe', 'high', 'extreme', 'critical', 'intense', 'very bad', 'acute']
|
60 |
+
}
|
61 |
+
self.negation_words = {'no', 'not', 'denies', 'without', 'negative', 'none', 'denied'}
|
62 |
+
except Exception as e:
|
63 |
+
st.error(f"Dataset Error: {str(e)}")
|
64 |
+
raise
|
65 |
+
|
66 |
+
def add_patient_data(self, patient_message):
|
67 |
+
try:
|
68 |
+
if not patient_message:
|
69 |
+
raise ValueError("Patient message cannot be empty")
|
70 |
+
self.local_messages.append({
|
71 |
+
'message': patient_message,
|
72 |
+
'timestamp': datetime.now().timestamp()
|
73 |
+
})
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"Error adding patient data: {str(e)}")
|
76 |
+
|
77 |
+
def extract_info_from_bot_response(self, bot_response_data):
|
78 |
+
try:
|
79 |
+
if not bot_response_data:
|
80 |
+
return 0, [], {}
|
81 |
+
|
82 |
+
bot_response_text = str(bot_response_data)
|
83 |
+
bot_response_lower = bot_response_text.lower()
|
84 |
+
|
85 |
+
# Age extraction
|
86 |
+
age = 0
|
87 |
+
age_pattern = r'(\d{1,3})\s*(?:years?-?old|yo|years|-years-old?)'
|
88 |
+
age_match = re.search(age_pattern, bot_response_text, re.IGNORECASE)
|
89 |
+
if age_match:
|
90 |
+
age = int(age_match.group(1))
|
91 |
+
if not (0 <= age <= 120): age = 20
|
92 |
+
|
93 |
+
# Symptom extraction
|
94 |
+
symptoms = []
|
95 |
+
for symptom in self.data['Symptom'].unique():
|
96 |
+
symptom_lower = symptom.lower()
|
97 |
+
pattern = re.compile(r'\b' + re.escape(symptom_lower) + r'\b', re.IGNORECASE)
|
98 |
+
matches = pattern.finditer(bot_response_lower)
|
99 |
+
for match in matches:
|
100 |
+
start_pos = match.start()
|
101 |
+
preceding_text = bot_response_lower[:start_pos].split()
|
102 |
+
preceding_words = preceding_text[-3:]
|
103 |
+
if not any(neg in preceding_words for neg in self.negation_words):
|
104 |
+
symptoms.append(symptom)
|
105 |
+
break
|
106 |
+
|
107 |
+
# Severity analysis
|
108 |
+
symptom_severity = {}
|
109 |
+
for symptom in symptoms:
|
110 |
+
symptom_lower = symptom.lower()
|
111 |
+
highest_severity_score = 0
|
112 |
+
pattern = re.compile(r'\b' + re.escape(symptom_lower) + r'\b', re.IGNORECASE)
|
113 |
+
matches = pattern.finditer(bot_response_lower)
|
114 |
+
for match in matches:
|
115 |
+
start, end = match.start(), match.end()
|
116 |
+
words = bot_response_lower.split()
|
117 |
+
match_index = len(bot_response_lower[:start].split())
|
118 |
+
context_start = max(0, match_index - 5)
|
119 |
+
context_end = min(len(words), match_index + 6)
|
120 |
+
context = ' '.join(words[context_start:context_end])
|
121 |
+
for severity, keywords in self.severity_mapping.items():
|
122 |
+
for keyword in keywords:
|
123 |
+
if re.search(r'\b' + re.escape(keyword) + r'\b', context):
|
124 |
+
condition_data = self.data[(self.data['Symptom'] == symptom) &
|
125 |
+
(self.data['Condition'] == severity)]
|
126 |
+
if not condition_data.empty:
|
127 |
+
risk_score = condition_data['Risk Score'].values[0]
|
128 |
+
if risk_score > highest_severity_score:
|
129 |
+
highest_severity_score = risk_score
|
130 |
+
if highest_severity_score == 0:
|
131 |
+
highest_severity_score = self.data[self.data['Symptom'] == symptom]['Risk Score'].max()
|
132 |
+
symptom_severity[symptom] = highest_severity_score
|
133 |
+
|
134 |
+
return age, symptoms, symptom_severity
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
st.error(f"Extraction Error: {str(e)}")
|
138 |
+
return 0, [], {}
|
139 |
+
|
140 |
+
def calculate_risk_score(self, age, symptoms, symptom_severity):
|
141 |
+
try:
|
142 |
+
# Validate symptoms
|
143 |
+
valid_symptoms = [s for s in symptoms if s in self.data['Symptom'].values]
|
144 |
+
if not valid_symptoms:
|
145 |
+
return "Unknown", 0, 0
|
146 |
+
|
147 |
+
# Calculate scores with validation
|
148 |
+
symptom_risk = sum(float(symptom_severity.get(s, 0)) for s in valid_symptoms)
|
149 |
+
age_risk = max((age - 40) * 0.05, 0) if age >= 40 else 0
|
150 |
+
final_score = symptom_risk + age_risk
|
151 |
+
|
152 |
+
# Ensure we don't divide by zero
|
153 |
+
max_score = self.MAX_RISK_SCORE if self.MAX_RISK_SCORE > 0 else 1
|
154 |
+
risk_pct = min(100, max(0, (final_score / max_score) * 100))
|
155 |
+
|
156 |
+
if risk_pct <= 30: label = "Low"
|
157 |
+
elif risk_pct <= 70: label = "Medium"
|
158 |
+
else: label = "High"
|
159 |
+
|
160 |
+
return label, final_score, round(risk_pct, 1)
|
161 |
+
except Exception as e:
|
162 |
+
st.error(f"Risk Calculation Error: {str(e)}")
|
163 |
+
return "Low", 0, 0
|
164 |
+
|
165 |
+
def analyze_patient_data(self, patient_message):
|
166 |
+
"""Full analysis workflow"""
|
167 |
+
try:
|
168 |
+
# Clean input message
|
169 |
+
patient_message = patient_message.replace("Symptom", "").replace("Condition", "")
|
170 |
+
|
171 |
+
self.add_patient_data(patient_message)
|
172 |
+
age, symptoms, severity = self.extract_info_from_bot_response(patient_message)
|
173 |
+
|
174 |
+
# Filter invalid symptoms
|
175 |
+
valid_symptoms = [s for s in symptoms if s in self.data['Symptom'].values]
|
176 |
+
if not valid_symptoms:
|
177 |
+
return {"error": "No valid symptoms detected"}
|
178 |
+
|
179 |
+
# Get unique conditions from valid symptoms
|
180 |
+
conditions = self.data[self.data['Symptom'].isin(valid_symptoms)]['Condition'].unique()
|
181 |
+
valid_conditions = [c for c in conditions if c not in ['Normal', 'Moderate', 'Severe', 'Condition']]
|
182 |
+
|
183 |
+
risk_label, risk_score, risk_pct = self.calculate_risk_score(age, valid_symptoms, severity)
|
184 |
+
|
185 |
+
return {
|
186 |
+
'age': age,
|
187 |
+
'symptoms': valid_symptoms,
|
188 |
+
'symptom_severity': severity,
|
189 |
+
'risk_label': risk_label,
|
190 |
+
'risk_score': round(risk_score, 2),
|
191 |
+
'risk_percentage': risk_pct,
|
192 |
+
'possible_conditions': valid_conditions,
|
193 |
+
'analysis_timestamp': datetime.now().isoformat()
|
194 |
+
}
|
195 |
+
except Exception as e:
|
196 |
+
return {"error": f"Analysis Error: {str(e)}"}
|
197 |
+
|
198 |
+
def process_user_data(self):
|
199 |
+
try:
|
200 |
+
if not self.local_messages:
|
201 |
+
return {"error": "No messages available"}
|
202 |
+
|
203 |
+
latest = max(self.local_messages, key=lambda x: x['timestamp'])
|
204 |
+
age, symptoms, severity = self.extract_info_from_bot_response(latest['message'])
|
205 |
+
|
206 |
+
if not symptoms: return {"error": "No symptoms detected"}
|
207 |
+
|
208 |
+
risk_label, risk_score, risk_pct = self.calculate_risk_score(age, symptoms, severity)
|
209 |
+
|
210 |
+
return {
|
211 |
+
'age': age,
|
212 |
+
'symptoms': symptoms,
|
213 |
+
'symptom_severity': severity,
|
214 |
+
'risk_label': risk_label,
|
215 |
+
'risk_score': round(risk_score, 2),
|
216 |
+
'risk_percentage': risk_pct,
|
217 |
+
'possible_conditions': self.data[self.data['Symptom'].isin(symptoms)]['Condition'].unique().tolist(),
|
218 |
+
'analysis_timestamp': datetime.now().isoformat()
|
219 |
+
}
|
220 |
+
except Exception as e:
|
221 |
+
return {"error": f"Processing Error: {str(e)}"}
|
222 |
|
223 |
def initialize_groq_client():
|
224 |
try:
|
225 |
+
api_key = st.secrets.get("GROQ_API_KEY", os.getenv("GROQ_API_KEY"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
if not api_key:
|
227 |
+
api_key = st.text_input("Enter Groq API Key:", type="password")
|
228 |
+
if not api_key: return False
|
|
|
|
|
229 |
|
230 |
+
st.session_state.client = Groq(api_key=api_key)
|
|
|
|
|
231 |
return True
|
232 |
except Exception as e:
|
233 |
+
st.error(f"Groq Error: {str(e)}")
|
234 |
return False
|
235 |
|
236 |
def symptom_interrogation_step():
|
237 |
client = st.session_state.client
|
238 |
main_symptom = st.session_state.patient_info['main_symptom']
|
239 |
+
step = len(st.session_state.symptom_details)
|
240 |
|
241 |
if step == 0:
|
|
|
242 |
medical_focus = {
|
243 |
'pain': "location/radiation/provoking factors",
|
244 |
'fever': "pattern/associated symptoms/response to meds",
|
245 |
'gi': "bowel changes/ingestion timing/associated symptoms",
|
246 |
'respiratory': "exertion relationship/sputum/triggers"
|
247 |
}
|
248 |
+
focus = medical_focus.get(main_symptom.lower(), "temporal pattern/severity progression/associated symptoms")
|
|
|
|
|
249 |
prompt = f"""As an ER physician, ask ONE high-yield question about {main_symptom}
|
250 |
+
focusing on {focus}. Use simple, patient-friendly language. Ask only ONE question."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
else:
|
|
|
252 |
last_qa = st.session_state.symptom_details[-1]
|
253 |
+
prompt = f"""Based on previous Q: {last_qa['question']} β A: {last_qa['answer']}
|
254 |
+
Ask the NEXT critical question about {main_symptom} considering red flags."""
|
|
|
|
|
255 |
|
256 |
try:
|
257 |
response = client.chat.completions.create(
|
258 |
+
messages=[{"role": "user", "content": prompt}],
|
259 |
model="mixtral-8x7b-32768",
|
260 |
temperature=0.3
|
261 |
)
|
262 |
question = response.choices[0].message.content.strip()
|
263 |
+
if not question.endswith('?'): question += '?'
|
|
|
264 |
st.session_state.current_question = question
|
265 |
except Exception as e:
|
266 |
+
st.error(f"Question Generation Error: {str(e)}")
|
267 |
st.stop()
|
268 |
|
269 |
def handle_symptom_interrogation():
|
|
|
275 |
|
276 |
if 'current_question' in st.session_state:
|
277 |
with st.form("symptom_qna"):
|
278 |
+
st.markdown(f'<div class="dr-message">π¨ββ {st.session_state.current_question}</div>', unsafe_allow_html=True)
|
279 |
answer = st.text_input("Your answer:", key=f"answer_{len(st.session_state.symptom_details)}")
|
280 |
|
281 |
if st.form_submit_button("Next"):
|
|
|
285 |
"answer": answer
|
286 |
})
|
287 |
del st.session_state.current_question
|
288 |
+
|
289 |
+
# Emergency check
|
290 |
if len(st.session_state.symptom_details) >= 3:
|
291 |
last_answer = st.session_state.symptom_details[-1]['answer']
|
292 |
try:
|
293 |
urgency_check = st.session_state.client.chat.completions.create(
|
294 |
+
messages=[{"role": "user", "content": f"Does this indicate emergency? '{last_answer}' Yes/No"}],
|
|
|
295 |
model="mixtral-8x7b-32768",
|
296 |
temperature=0
|
297 |
).choices[0].message.content
|
|
|
298 |
if 'YES' in urgency_check.upper():
|
299 |
+
st.markdown('<div class="emergency-alert">π¨ Emergency Detected! Seek Immediate Care.</div>', unsafe_allow_html=True)
|
300 |
st.session_state.current_step = 4
|
301 |
return
|
302 |
+
except: pass
|
303 |
+
|
|
|
304 |
if len(st.session_state.symptom_details) < 7:
|
305 |
st.session_state.current_step = 1
|
|
|
306 |
else:
|
307 |
st.session_state.current_step = 3
|
308 |
+
st.rerun()
|
309 |
else:
|
310 |
st.warning("Please provide an answer")
|
311 |
|
|
|
318 |
st.session_state.patient_info['main_symptom'] = st.text_input("Main Symptom")
|
319 |
|
320 |
if st.form_submit_button("Next"):
|
321 |
+
if all(st.session_state.patient_info.get(k) for k in ['name', 'age', 'gender', 'main_symptom']):
|
322 |
st.session_state.current_step = 1
|
323 |
st.rerun()
|
324 |
else:
|
325 |
+
st.warning("Please fill all fields")
|
326 |
|
327 |
def collect_medical_history():
|
328 |
st.header("Medical History")
|
|
|
338 |
st.rerun()
|
339 |
|
340 |
def generate_risk_assessment():
|
341 |
+
st.header("Comprehensive Assessment")
|
342 |
|
343 |
try:
|
344 |
+
# Generate clinical summary
|
345 |
+
symptom_log = "\n".join([f"Q: {q['question']}\nA: {q['answer']}" for q in st.session_state.symptom_details])
|
|
|
|
|
|
|
346 |
patient_profile = f"""
|
|
|
347 |
Name: {st.session_state.patient_info['name']}
|
348 |
Age: {st.session_state.patient_info['age']}
|
349 |
Gender: {st.session_state.patient_info['gender']}
|
350 |
+
Main Symptom: {st.session_state.patient_info['main_symptom']}
|
351 |
|
352 |
+
Symptom Details:
|
|
|
|
|
|
|
353 |
{symptom_log}
|
354 |
|
355 |
+
Medical History: {st.session_state.patient_info.get('medical_history', 'N/A')}
|
356 |
+
Medications: {st.session_state.patient_info.get('medications', 'N/A')}
|
357 |
+
Allergies: {st.session_state.patient_info.get('allergies', 'N/A')}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
"""
|
359 |
|
360 |
+
# Risk analysis
|
361 |
+
analysis_system = MedicalAnalysisSystem("DATASET.csv")
|
362 |
+
analysis_results = analysis_system.analyze_patient_data(patient_profile)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
+
# Store the analysis results in session state
|
365 |
+
st.session_state.analysis_results = analysis_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
+
col1, col2 = st.columns(2)
|
368 |
+
with col1:
|
369 |
+
st.subheader("Clinical Summary")
|
370 |
+
st.markdown(f"\n{patient_profile}\n")
|
371 |
+
|
372 |
+
with col2:
|
373 |
+
st.subheader("Risk Analysis")
|
374 |
+
if "error" in analysis_results:
|
375 |
+
st.error(analysis_results["error"])
|
376 |
+
else:
|
377 |
+
st.metric("Risk Level", analysis_results['risk_label'])
|
378 |
+
st.progress(analysis_results['risk_percentage'] / 100)
|
379 |
+
st.write(f"*Score*: {analysis_results['risk_score']:.1f}/{analysis_system.MAX_RISK_SCORE:.1f}")
|
380 |
+
|
381 |
+
# Download report
|
382 |
+
report_content = f"CLINICAL SUMMARY:\n{patient_profile}\n\nRISK ANALYSIS:\n{analysis_results}"
|
383 |
+
st.download_button("Download Full Report", report_content, "medical_report.txt")
|
384 |
+
|
385 |
except Exception as e:
|
386 |
+
st.error(f"Assessment Error: {str(e)}")
|
387 |
|
388 |
+
def schedule_appointment():
|
389 |
+
st.header("π Schedule Specialist Appointment")
|
390 |
|
391 |
+
# Doctor database
|
392 |
+
doctors = [
|
393 |
+
{
|
394 |
+
'name': 'Dr. Sarah Johnson',
|
395 |
+
'hospital': 'City General Hospital',
|
396 |
+
'specialty': 'Cardiology',
|
397 |
+
'slots': ['2024-03-25 09:00', '2024-03-25 10:00', '2024-03-26 11:00'],
|
398 |
+
'contact': '555-0101',
|
399 |
+
'emergency': True
|
400 |
+
},
|
401 |
+
{
|
402 |
+
'name': 'Dr. Michael Chen',
|
403 |
+
'hospital': 'Metropolitan Health',
|
404 |
+
'specialty': 'Neurology',
|
405 |
+
'slots': ['2024-03-25 14:00', '2024-03-26 09:30', '2024-03-27 15:00'],
|
406 |
+
'contact': '555-0102',
|
407 |
+
'emergency': True
|
408 |
+
},
|
409 |
+
{
|
410 |
+
'name': 'Dr. Emily White',
|
411 |
+
'hospital': 'Sunrise Clinic',
|
412 |
+
'specialty': 'General Practice',
|
413 |
+
'slots': ['2024-03-24 10:00', '2024-03-25 11:00', '2024-03-26 16:00'],
|
414 |
+
'contact': '555-0103',
|
415 |
+
'emergency': False
|
416 |
+
},
|
417 |
+
{
|
418 |
+
'name': 'Dr. Raj Patel',
|
419 |
+
'hospital': 'Westside Medical Center',
|
420 |
+
'specialty': 'Orthopedics',
|
421 |
+
'slots': ['2024-03-25 08:00', '2024-03-26 10:00', '2024-03-27 09:00'],
|
422 |
+
'contact': '555-0104',
|
423 |
+
'emergency': True
|
424 |
+
},
|
425 |
+
{
|
426 |
+
'name': 'Dr. Linda Garcia',
|
427 |
+
'hospital': "Children's Hospital",
|
428 |
+
'specialty': 'Pediatrics',
|
429 |
+
'slots': ['2024-03-25 12:00', '2024-03-26 14:00', '2024-03-27 10:00'],
|
430 |
+
'contact': '555-0105',
|
431 |
+
'emergency': True
|
432 |
+
}
|
433 |
+
]
|
434 |
+
|
435 |
+
risk_data = st.session_state.get('analysis_results', {})
|
436 |
+
|
437 |
+
# Check if risk_data is None or empty
|
438 |
+
if not risk_data or "error" in risk_data:
|
439 |
+
st.error("No risk assessment available. Please complete the assessment first.")
|
440 |
+
return
|
441 |
+
|
442 |
+
risk_label = risk_data.get('risk_label', 'Low')
|
443 |
+
|
444 |
+
# Priority explanation
|
445 |
+
st.markdown(f"""
|
446 |
+
<div class="priority-banner">
|
447 |
+
Your current risk level: <strong>{risk_label}</strong> priority
|
448 |
+
<br>{(risk_label == 'High') and 'π₯ Urgent - Same day appointments available'
|
449 |
+
or (risk_label == 'Medium') and 'π¨ Semi-Urgent - Next day appointments'
|
450 |
+
or 'π© Routine - Book within 3 days'}
|
451 |
</div>
|
452 |
+
""", unsafe_allow_html=True)
|
453 |
+
|
454 |
+
# Filter doctors based on risk
|
455 |
+
if risk_label == 'High':
|
456 |
+
available_doctors = [d for d in doctors if d['emergency']]
|
457 |
+
else:
|
458 |
+
available_doctors = doctors
|
459 |
+
|
460 |
+
# Display doctors in columns
|
461 |
+
cols = st.columns(2)
|
462 |
+
for idx, doctor in enumerate(available_doctors):
|
463 |
+
with cols[idx % 2]:
|
464 |
+
with st.container():
|
465 |
+
st.subheader(f"π₯ {doctor['hospital']}")
|
466 |
+
st.markdown(f"""
|
467 |
+
*Doctor*: {doctor['name']}
|
468 |
+
*Specialty*: {doctor['specialty']}
|
469 |
+
*Contact*: {doctor['contact']}
|
470 |
+
""")
|
471 |
+
|
472 |
+
# Sort slots based on risk
|
473 |
+
slots = sorted(doctor['slots'], key=lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M'))
|
474 |
+
if risk_label == 'Low':
|
475 |
+
slots = slots[::-1]
|
476 |
+
|
477 |
+
selected_slot = st.selectbox(f"Available slots with {doctor['name']}",
|
478 |
+
slots,
|
479 |
+
key=f"slot_{idx}")
|
480 |
+
|
481 |
+
if st.button(f"Book with {doctor['name']}", key=f"book_{idx}"):
|
482 |
+
st.session_state.appointment_details = {
|
483 |
+
'doctor': doctor['name'],
|
484 |
+
'hospital': doctor['hospital'],
|
485 |
+
'time': selected_slot,
|
486 |
+
'contact': doctor['contact'],
|
487 |
+
'risk_level': risk_label
|
488 |
+
}
|
489 |
+
st.success("Appointment booked successfully!")
|
490 |
+
st.balloons()
|
491 |
+
|
492 |
+
# Generate appointment summary
|
493 |
+
summary = f"""
|
494 |
+
*Patient Name*: {st.session_state.patient_info['name']}
|
495 |
+
*Age*: {st.session_state.patient_info['age']}
|
496 |
+
*Booked Appointment*:
|
497 |
+
- Doctor: {doctor['name']}
|
498 |
+
- Hospital: {doctor['hospital']}
|
499 |
+
- Time: {selected_slot}
|
500 |
+
- Contact: {doctor['contact']}
|
501 |
+
- Priority Level: {risk_label}
|
502 |
+
"""
|
503 |
+
st.session_state.appointment_summary = summary
|
504 |
+
|
505 |
+
# Show download button
|
506 |
+
st.download_button("Download Appointment Details",
|
507 |
+
summary,
|
508 |
+
"appointment_confirmation.txt",
|
509 |
+
help="Save your appointment details")
|
510 |
+
def main():
|
511 |
+
st.title("π₯ AI Medical Consultancy")
|
512 |
|
513 |
+
# Initialize Groq client
|
514 |
if not initialize_groq_client():
|
515 |
+
st.warning("Please provide a valid Groq API key to proceed.")
|
516 |
return
|
517 |
+
|
518 |
+
# Define steps for the progress bar
|
519 |
+
steps = ["Patient Info", "Symptoms", "History", "Report", "Booking"]
|
520 |
|
521 |
+
# Display progress bar
|
522 |
+
progress = f"""
|
523 |
+
<div class="progress-bar">
|
524 |
+
{"".join(f'<div class="step {"active" if st.session_state.current_step >= i else ""}">{i+1}. {step}</div>'
|
525 |
+
for i, step in enumerate(steps))}
|
526 |
+
</div>
|
527 |
+
"""
|
528 |
+
st.markdown(progress, unsafe_allow_html=True)
|
529 |
+
|
530 |
+
# Step routing logic
|
531 |
+
if st.session_state.current_step == 0:
|
532 |
+
collect_basic_info() # Step 1: Collect patient information
|
533 |
+
elif st.session_state.current_step in [1, 2]:
|
534 |
+
handle_symptom_interrogation() # Step 2: Symptom analysis
|
535 |
+
elif st.session_state.current_step == 3:
|
536 |
+
collect_medical_history() # Step 3: Collect medical history
|
537 |
+
elif st.session_state.current_step == 4:
|
538 |
+
generate_risk_assessment() # Step 4: Generate risk assessment
|
539 |
+
if st.button("π
Schedule Doctor Appointment"):
|
540 |
+
st.session_state.current_step = 5 # Move to the booking step
|
541 |
+
st.rerun()
|
542 |
+
elif st.session_state.current_step == 5:
|
543 |
+
schedule_appointment() # Step 5: Schedule appointment with a doctor
|
544 |
+
|
545 |
+
# Debugging: Show session state (optional)
|
546 |
+
if st.sidebar.checkbox("Show Session State (Debug)"):
|
547 |
+
st.sidebar.write(st.session_state)
|
548 |
|
549 |
+
if _name_ == "_main_":
|
550 |
main()
|