File size: 16,498 Bytes
87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 236f289 87fdfe1 131f0c3 87fdfe1 ae6054f 87fdfe1 131f0c3 87fdfe1 131f0c3 87fdfe1 131f0c3 87fdfe1 131f0c3 87fdfe1 131f0c3 87fdfe1 131f0c3 87fdfe1 131f0c3 87fdfe1 131f0c3 87fdfe1 ae6054f 87fdfe1 ae6054f 87fdfe1 131f0c3 87fdfe1 131f0c3 87fdfe1 131f0c3 9ed2f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import streamlit as st
import os
from groq import Groq
from datetime import datetime
# Set page config FIRST
st.set_page_config(page_title="AI Medical Consultancy", layout="wide")
# Custom CSS for styling
st.markdown("""
<style>
/* Color Variables */
:root {
--primary: #3498db; /* Blue */
--secondary: #2c3e50; /* Dark accent */
--accent: #f1c40f; /* Yellow */
--success: #2ecc71; /* Positive actions */
--light: #ffffff; /* White backgrounds */
--dark: #000000; /* Black text/elements */
}
/* Main container styling */
.stApp {
background: linear-gradient(135deg, #3498db 0%, #e0e0e0 100%);
font-family: 'Arial', sans-serif;
}
/* Headers styling */
h1, h2, h3 {
color: var(--dark) !important;
border-bottom: 3px solid var(--primary);
padding-bottom: 0.3em;
}
/* Form containers */
.stForm {
background: #000000;
border: 1px solid rgba(44, 62, 80, 0.2);
border-radius: 15px;
padding: 2rem;
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.12);
margin: 1rem 0;
}
/* Input fields */
.stTextInput input, .stNumberInput input,
.stSelectbox select, .stTextArea textarea {
border: 2px solid #00FFFF !important;
border-radius: 10px !important;
padding: 1rem !important;
background: #00FFFF !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
color: var(--dark) !important;
}
.stTextInput input:focus, .stNumberInput input:focus,
.stSelectbox select:focus, .stTextArea textarea:focus {
border-color: var(--primary) !important;
box-shadow: 0 0 12px rgba(52, 152, 219, 0.2) !important;
background: white !important;
color: var(--dark) !important;
}
/* Buttons styling */
.stButton>button {
background: linear-gradient(135deg, var(--primary) 0%, var(--accent) 100%) !important;
color: var(--dark) !important;
border: none !important;
border-radius: 10px !important;
padding: 1rem 2rem !important;
font-size: 1rem !important;
transition: all 0.3s ease;
position: relative;
overflow: hidden;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 8px 15px rgba(52, 152, 219, 0.3);
opacity: 0.95;
}
.stButton>button:active {
transform: translateY(0);
opacity: 1;
}
/* Progress indicator */
.progress-bar {
display: flex;
justify-content: space-between;
margin: 2rem 0;
padding: 1rem;
background: rgba(255, 255, 255, 0.9);
border-radius: 10px;
color: var(--dark) !important;
}
.step {
flex: 1;
text-align: center;
padding: 1rem;
font-weight: 600;
color: #95a5a6;
position: relative;
}
.step.active {
color: var(--primary);
}
.step.active:after {
content: '';
position: absolute;
bottom: -1px;
left: 50%;
transform: translateX(-50%);
width: 40%;
height: 3px;
background: var(--primary);
}
/* Chat bubbles */
.dr-message {
background: linear-gradient(135deg, var(--primary) 0%, #2980b9 100%);
color: white;
border-radius: 20px 20px 20px 4px;
padding: 1.2rem 1.5rem;
margin: 1rem 0;
max-width: 80%;
width: fit-content;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
.user-message {
background: linear-gradient(135deg, #f1c40f 0%, #e1b800 100%);
margin-left: auto;
border-radius: 20px 20px 4px 20px;
color: var(--dark) !important;
}
/* Emergency alert */
.emergency-alert {
background: linear-gradient(135deg, var(--accent) 0%, #c0392b 100%);
color: white;
padding: 2rem;
border-radius: 15px;
animation: pulse 1.5s infinite;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}
@keyframes pulse {
0% { transform: scale(1); }
50% { transform: scale(1.02); }
100% { transform: scale(1); }
}
/* Download button */
.download-btn {
background: linear-gradient(135deg, var(--success) 0%, #27ae60 100%) !important;
}
/* Enhanced Data Visualization Contrast */
.stDataFrame {
border: 1px solid rgba(0, 0, 0, 0.1);
border-radius: 12px;
overflow: hidden;
background: #f0f0f0;
color: var(--dark) !important;
}
/* Tabbed Interface Styling */
.stTabs [role="tablist"] {
gap: 10px;
padding: 8px;
background: rgba(240, 240, 240, 0.9);
border-radius: 12px;
color: var(--dark) !important;
}
.stTabs [role="tab"] {
background: #ffffff !important;
border-radius: 8px !important;
transition: all 0.3s ease;
color: var(--dark) !important;
}
.stTabs [role="tab"][aria-selected="true"] {
background: var(--primary) !important;
color: white !important;
transform: scale(1.05);
}
</style>
""", unsafe_allow_html=True)
# Initialize session state variables
if 'current_step' not in st.session_state:
st.session_state.current_step = 0
if 'symptom_details' not in st.session_state:
st.session_state.symptom_details = [] # Initialize as an empty list
if 'patient_info' not in st.session_state:
st.session_state.patient_info = {}
def initialize_groq_client():
try:
# Try to get the API key from Streamlit secrets
api_key = None
try:
api_key = st.secrets.get("GROQ_API_KEY", os.getenv("GROQ_API_KEY"))
except FileNotFoundError:
st.warning("No `secrets.toml` file found. Please create one in the `.streamlit` folder.")
# If not found, prompt the user to enter it
if not api_key:
api_key = st.text_input("Enter your Groq API Key:", type="password")
if not api_key:
st.warning("Please provide a valid Groq API key to proceed.")
return False
# Initialize the Groq client
client = Groq(api_key=api_key)
st.session_state.client = client
return True
except Exception as e:
st.error(f"Error initializing Groq client: {str(e)}")
return False
def symptom_interrogation_step():
client = st.session_state.client
main_symptom = st.session_state.patient_info['main_symptom']
step = len(st.session_state.symptom_details) # Use the number of collected details as the step
if step == 0:
# First question: ask about the main symptom
medical_focus = {
'pain': "location/radiation/provoking factors",
'fever': "pattern/associated symptoms/response to meds",
'gi': "bowel changes/ingestion timing/associated symptoms",
'respiratory': "exertion relationship/sputum/triggers"
}
focus = medical_focus.get(main_symptom.lower(),
"temporal pattern/severity progression/associated symptoms")
prompt = f"""As an ER physician, ask ONE high-yield question about {main_symptom}
focusing on {focus} to differentiate serious causes. Your task is to have a polite and simple conversation with a patient.
Start by asking ONE specific follow-up question about their initial symptom: {main_symptom}.
Ask only one question at a time to avoid overwhelming the patient.
Keep your language clear, professional, and easy to understand.
Dont display possibe symptoms or why you are asking questions."""
messages = [
{"role": "system", "content": "Ask focused clinical questions. One at a time."},
{"role": "user", "content": prompt}
]
else:
# Subsequent questions: use the last Q&A to generate the next question
last_qa = st.session_state.symptom_details[-1]
prompt = f"""Last Q&A: {last_qa['question']} β {last_qa['answer']}
Based on this, ask the NEXT most critical question to differentiate between
possible causes of {main_symptom}. Consider red flags and likelihood."""
messages = [{"role": "user", "content": prompt}]
try:
response = client.chat.completions.create(
messages=messages,
model="mixtral-8x7b-32768",
temperature=0.3
)
question = response.choices[0].message.content.strip()
if not question.endswith('?'):
question += '?'
st.session_state.current_question = question
except Exception as e:
st.error(f"Error generating question: {str(e)}")
st.stop()
def handle_symptom_interrogation():
st.header("Symptom Analysis")
if st.session_state.current_step == 1:
symptom_interrogation_step()
st.session_state.current_step = 2
if 'current_question' in st.session_state:
with st.form("symptom_qna"):
st.markdown(f'<div class="dr-message">π¨ββοΈ {st.session_state.current_question}</div>', unsafe_allow_html=True)
answer = st.text_input("Your answer:", key=f"answer_{len(st.session_state.symptom_details)}")
if st.form_submit_button("Next"):
if answer:
st.session_state.symptom_details.append({
"question": st.session_state.current_question,
"answer": answer
})
del st.session_state.current_question
# Check for emergency after 3 questions
if len(st.session_state.symptom_details) >= 3:
last_answer = st.session_state.symptom_details[-1]['answer']
try:
urgency_check = st.session_state.client.chat.completions.create(
messages=[{"role": "user", "content":
f"Does '{last_answer}' indicate immediate emergency? Yes/No"}],
model="mixtral-8x7b-32768",
temperature=0
).choices[0].message.content
if 'YES' in urgency_check.upper():
st.markdown('<div class="emergency-alert">π¨ Emergency detected! Please seek immediate medical attention.</div>', unsafe_allow_html=True)
st.session_state.current_step = 4
return
except Exception as e:
st.error(f"Error checking urgency: {str(e)}")
if len(st.session_state.symptom_details) < 7:
st.session_state.current_step = 1
st.rerun()
else:
st.session_state.current_step = 3
st.rerun()
else:
st.warning("Please provide an answer")
def collect_basic_info():
st.header("Patient Information")
with st.form("basic_info"):
st.session_state.patient_info['name'] = st.text_input("Full Name")
st.session_state.patient_info['age'] = st.number_input("Age", min_value=0, max_value=120)
st.session_state.patient_info['gender'] = st.selectbox("Gender", ["Male", "Female", "Other"])
st.session_state.patient_info['main_symptom'] = st.text_input("Main Symptom")
if st.form_submit_button("Next"):
if all([st.session_state.patient_info.get(k) for k in ['name', 'age', 'gender', 'main_symptom']]):
st.session_state.current_step = 1
st.rerun()
else:
st.warning("Please fill all required fields")
def collect_medical_history():
st.header("Medical History")
with st.form("medical_history"):
st.session_state.patient_info['medical_history'] = st.text_area("Relevant Medical History")
st.session_state.patient_info['medications'] = st.text_area("Current Medications")
st.session_state.patient_info['allergies'] = st.text_input("Known Allergies")
st.session_state.patient_info['last_meal'] = st.text_input("Last Meal Time")
st.session_state.patient_info['recent_travel'] = st.text_input("Recent Travel History")
if st.form_submit_button("Submit"):
st.session_state.current_step = 4
st.rerun()
def generate_risk_assessment():
st.header("Risk Assessment")
try:
symptom_log = "\n".join(
[f"Q: {q['question']}\nA: {q['answer']}"
for q in st.session_state.symptom_details]
)
patient_profile = f"""
**Patient Profile**
Name: {st.session_state.patient_info['name']}
Age: {st.session_state.patient_info['age']}
Gender: {st.session_state.patient_info['gender']}
**Primary Complaint**
{st.session_state.patient_info['main_symptom']}
**Symptom Interrogation**
{symptom_log}
**Medical History**
{st.session_state.patient_info.get('medical_history', 'None reported')}
**Current Medications**
{st.session_state.patient_info.get('medications', 'None')}
**Allergies**
{st.session_state.patient_info.get('allergies', 'None reported')}
**Recent Context**
Last Meal: {st.session_state.patient_info.get('last_meal', 'Unknown')}
Recent Travel: {st.session_state.patient_info.get('recent_travel', 'None')}
"""
analysis_prompt = f"""STRICTLY follow these instructions:
1. Analyze this case: {patient_profile}
2. *Include ONLY symptoms the patient is actively experiencing*. Exclude all negated symptoms (e.g., "no fever," "denies breathlessness").
3. Output *EXCLUSIVELY* in this format with NO additional text or explanations:
[Age]-year-old [gender] with [specific, present symptoms].
Example Output:
"45-year-old man with severe chest pain radiating to the jaw"
Your Output:"""
response = st.session_state.client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a medical AI that outputs ONLY patient descriptions."},
{"role": "user", "content": analysis_prompt}
],
model="mixtral-8x7b-32768",
temperature=0.3,
max_tokens=100
)
risk_prompt = response.choices[0].message.content.strip('"')
st.subheader("Clinical Summary")
st.markdown(f"```\n{risk_prompt}\n```")
# Create download button
timestamp = datetime.now().strftime('%Y%m%d%H%M')
filename = f"{st.session_state.patient_info['name'].replace(' ', '_')}_assessment_{timestamp}.txt"
st.download_button(
label="Download Assessment",
data=risk_prompt,
file_name=filename,
mime="text/plain"
)
except Exception as e:
st.error(f"Error generating risk assessment: {str(e)}")
def main():
st.title("π₯ AI Medical Consultancy")
# Progress indicator
steps_titles = ["Patient Info", "Symptoms", "Medical History", "Assessment"]
progress_html = """
<div class="progress-bar">
<div class="step {}">{}</div>
<div class="step {}">{}</div>
<div class="step {}">{}</div>
<div class="step {}">{}</div>
</div>
""".format(
'active' if st.session_state.current_step >= 0 else '',
'1. Patient Info',
'active' if st.session_state.current_step >= 1 else '',
'2. Symptoms',
'active' if st.session_state.current_step >= 3 else '',
'3. History',
'active' if st.session_state.current_step >= 4 else '',
'4. Report'
)
st.markdown(progress_html, unsafe_allow_html=True)
if not initialize_groq_client():
return
steps = {
0: collect_basic_info,
1: handle_symptom_interrogation,
2: handle_symptom_interrogation,
3: collect_medical_history,
4: generate_risk_assessment
}
current_step = st.session_state.get('current_step', 0)
if current_step in steps:
steps[current_step]()
if __name__ == "__main__":
main() |