Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,6 @@ import streamlit as st
|
|
2 |
import os
|
3 |
from groq import Groq
|
4 |
from datetime import datetime
|
5 |
-
from transformers import pipeline
|
6 |
-
import pandas as pd
|
7 |
-
import re
|
8 |
-
import torch
|
9 |
-
|
10 |
-
# Force CPU usage
|
11 |
-
device = torch.device("cpu")
|
12 |
|
13 |
# Set page config FIRST
|
14 |
st.set_page_config(page_title="AI Medical Consultancy", layout="wide")
|
@@ -16,80 +9,56 @@ st.set_page_config(page_title="AI Medical Consultancy", layout="wide")
|
|
16 |
# Custom CSS for styling
|
17 |
st.markdown("""
|
18 |
<style>
|
19 |
-
/* Color Variables */
|
20 |
-
:root {
|
21 |
-
--primary: #3498db; /* Blue */
|
22 |
-
--secondary: #2c3e50; /* Dark accent */
|
23 |
-
--accent: #f1c40f; /* Yellow */
|
24 |
-
--success: #2ecc71; /* Positive actions */
|
25 |
-
--light: #ffffff; /* White backgrounds */
|
26 |
-
--dark: #000000; /* Black text/elements */
|
27 |
-
}
|
28 |
-
|
29 |
/* Main container styling */
|
30 |
.stApp {
|
31 |
-
background: linear-gradient(135deg, #
|
32 |
font-family: 'Arial', sans-serif;
|
33 |
}
|
34 |
|
35 |
/* Headers styling */
|
36 |
h1, h2, h3 {
|
37 |
-
color:
|
38 |
-
border-bottom:
|
39 |
padding-bottom: 0.3em;
|
40 |
}
|
41 |
|
42 |
/* Form containers */
|
43 |
.stForm {
|
44 |
-
background:
|
45 |
-
border: 1px solid rgba(44, 62, 80, 0.2);
|
46 |
border-radius: 15px;
|
47 |
padding: 2rem;
|
48 |
-
box-shadow: 0
|
49 |
margin: 1rem 0;
|
50 |
}
|
51 |
|
52 |
/* Input fields */
|
53 |
-
.stTextInput input, .stNumberInput input,
|
54 |
-
|
55 |
-
border:
|
56 |
-
|
57 |
-
|
58 |
-
background: #00FFFF !important;
|
59 |
-
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
|
60 |
-
color: var(--dark) !important;
|
61 |
}
|
62 |
|
63 |
.stTextInput input:focus, .stNumberInput input:focus,
|
64 |
.stSelectbox select:focus, .stTextArea textarea:focus {
|
65 |
-
border-color:
|
66 |
-
box-shadow: 0 0
|
67 |
-
background: white !important;
|
68 |
-
color: var(--dark) !important;
|
69 |
}
|
70 |
|
71 |
/* Buttons styling */
|
72 |
.stButton>button {
|
73 |
-
background: linear-gradient(135deg,
|
74 |
-
color:
|
75 |
border: none !important;
|
76 |
-
border-radius:
|
77 |
-
padding:
|
78 |
font-size: 1rem !important;
|
79 |
-
transition:
|
80 |
-
position: relative;
|
81 |
-
overflow: hidden;
|
82 |
}
|
83 |
|
84 |
.stButton>button:hover {
|
85 |
transform: translateY(-2px);
|
86 |
-
box-shadow: 0
|
87 |
-
opacity: 0.95;
|
88 |
-
}
|
89 |
-
|
90 |
-
.stButton>button:active {
|
91 |
-
transform: translateY(0);
|
92 |
-
opacity: 1;
|
93 |
}
|
94 |
|
95 |
/* Progress indicator */
|
@@ -100,60 +69,39 @@ st.markdown("""
|
|
100 |
padding: 1rem;
|
101 |
background: rgba(255, 255, 255, 0.9);
|
102 |
border-radius: 10px;
|
103 |
-
color: var(--dark) !important;
|
104 |
}
|
105 |
|
106 |
.step {
|
107 |
flex: 1;
|
108 |
text-align: center;
|
109 |
-
padding:
|
110 |
-
font-weight:
|
111 |
-
color: #
|
112 |
-
position: relative;
|
113 |
}
|
114 |
|
115 |
.step.active {
|
116 |
-
color:
|
117 |
-
|
118 |
-
|
119 |
-
.step.active:after {
|
120 |
-
content: '';
|
121 |
-
position: absolute;
|
122 |
-
bottom: -1px;
|
123 |
-
left: 50%;
|
124 |
-
transform: translateX(-50%);
|
125 |
-
width: 40%;
|
126 |
-
height: 3px;
|
127 |
-
background: var(--primary);
|
128 |
}
|
129 |
|
130 |
/* Chat bubbles */
|
131 |
.dr-message {
|
132 |
-
background:
|
133 |
color: white;
|
134 |
-
border-radius:
|
135 |
-
padding:
|
136 |
margin: 1rem 0;
|
137 |
max-width: 80%;
|
138 |
width: fit-content;
|
139 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
140 |
-
}
|
141 |
-
|
142 |
-
.user-message {
|
143 |
-
background: linear-gradient(135deg, #f1c40f 0%, #e1b800 100%);
|
144 |
-
margin-left: auto;
|
145 |
-
border-radius: 20px 20px 4px 20px;
|
146 |
-
color: var(--dark) !important;
|
147 |
}
|
148 |
|
149 |
/* Emergency alert */
|
150 |
.emergency-alert {
|
151 |
-
background:
|
152 |
color: white;
|
153 |
padding: 2rem;
|
154 |
border-radius: 15px;
|
155 |
animation: pulse 1.5s infinite;
|
156 |
-
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
157 |
}
|
158 |
|
159 |
@keyframes pulse {
|
@@ -164,43 +112,11 @@ st.markdown("""
|
|
164 |
|
165 |
/* Download button */
|
166 |
.download-btn {
|
167 |
-
background: linear-gradient(135deg,
|
168 |
-
}
|
169 |
-
|
170 |
-
/* Enhanced Data Visualization Contrast */
|
171 |
-
.stDataFrame {
|
172 |
-
border: 1px solid rgba(0, 0, 0, 0.1);
|
173 |
-
border-radius: 12px;
|
174 |
-
overflow: hidden;
|
175 |
-
background: #f0f0f0;
|
176 |
-
color: var(--dark) !important;
|
177 |
-
}
|
178 |
-
|
179 |
-
/* Tabbed Interface Styling */
|
180 |
-
.stTabs [role="tablist"] {
|
181 |
-
gap: 10px;
|
182 |
-
padding: 8px;
|
183 |
-
background: rgba(240, 240, 240, 0.9);
|
184 |
-
border-radius: 12px;
|
185 |
-
color: var(--dark) !important;
|
186 |
-
}
|
187 |
-
|
188 |
-
.stTabs [role="tab"] {
|
189 |
-
background: #ffffff !important;
|
190 |
-
border-radius: 8px !important;
|
191 |
-
transition: all 0.3s ease;
|
192 |
-
color: var(--dark) !important;
|
193 |
-
}
|
194 |
-
|
195 |
-
.stTabs [role="tab"][aria-selected="true"] {
|
196 |
-
background: var(--primary) !important;
|
197 |
-
color: white !important;
|
198 |
-
transform: scale(1.05);
|
199 |
}
|
200 |
</style>
|
201 |
""", unsafe_allow_html=True)
|
202 |
|
203 |
-
|
204 |
# Initialize session state variables
|
205 |
if 'current_step' not in st.session_state:
|
206 |
st.session_state.current_step = 0
|
@@ -209,96 +125,6 @@ if 'symptom_details' not in st.session_state:
|
|
209 |
if 'patient_info' not in st.session_state:
|
210 |
st.session_state.patient_info = {}
|
211 |
|
212 |
-
# Initialize models and dataset with caching
|
213 |
-
@st.cache_resource
|
214 |
-
def load_ner_model():
|
215 |
-
return pipeline("token-classification",
|
216 |
-
model="d4data/biomedical-ner-all",
|
217 |
-
aggregation_strategy='first',
|
218 |
-
device=-1)
|
219 |
-
|
220 |
-
@st.cache_resource
|
221 |
-
def load_dataset():
|
222 |
-
try:
|
223 |
-
data = pd.read_csv('DATASET.csv', encoding='latin1')
|
224 |
-
data['Symptom_lower'] = data['Symptom'].str.strip().str.lower()
|
225 |
-
return data
|
226 |
-
except FileNotFoundError:
|
227 |
-
st.error("DATASET.csv not found. Please ensure the file is in the correct directory.")
|
228 |
-
return None
|
229 |
-
|
230 |
-
pipe = load_ner_model()
|
231 |
-
data = load_dataset()
|
232 |
-
if data is None:
|
233 |
-
st.stop()
|
234 |
-
|
235 |
-
SEVERITY_KEYWORDS = {
|
236 |
-
'normal': ['mild', 'occasional', 'controlled', 'temporary', 'fleeting'],
|
237 |
-
'moderate': ['moderate', 'persistent', 'frequent', 'prolonged', 'bloating'],
|
238 |
-
'severe': ['severe', 'extreme', 'crushing', 'radiating', 'blood', 'inability',
|
239 |
-
'sweating', 'vomiting', 'fever', 'swelling', 'radiates', 'persistent >3 days']
|
240 |
-
}
|
241 |
-
|
242 |
-
def merge_entities(entities, text):
|
243 |
-
"""Merge entities using dataset symptom names for multi-word matching"""
|
244 |
-
merged = []
|
245 |
-
detected = set()
|
246 |
-
text_lower = text.lower()
|
247 |
-
|
248 |
-
symptoms_sorted = data['Symptom'].str.lower().sort_values(
|
249 |
-
key=lambda x: x.str.len(), ascending=False).tolist()
|
250 |
-
|
251 |
-
for symptom in symptoms_sorted:
|
252 |
-
if symptom in text_lower and symptom not in detected:
|
253 |
-
start = text_lower.find(symptom)
|
254 |
-
end = start + len(symptom)
|
255 |
-
merged.append({
|
256 |
-
'word': text[start:end],
|
257 |
-
'start': start,
|
258 |
-
'end': end,
|
259 |
-
'entity_group': 'Sign_symptom'
|
260 |
-
})
|
261 |
-
detected.add(symptom)
|
262 |
-
return merged
|
263 |
-
|
264 |
-
def determine_condition(text, entity):
|
265 |
-
context_window = re.findall(r'\w+', text[max(0, entity['start']-20):entity['end']+20])
|
266 |
-
context = ' '.join(context_window).lower()
|
267 |
-
|
268 |
-
for level, keywords in SEVERITY_KEYWORDS.items():
|
269 |
-
if any(k in context for k in keywords):
|
270 |
-
return level.capitalize()
|
271 |
-
return 'Normal'
|
272 |
-
|
273 |
-
def get_risk_score(symptom, condition):
|
274 |
-
symptom_clean = symptom.strip().lower()
|
275 |
-
matches = data[
|
276 |
-
data['Symptom_lower'].str.contains(rf'\b{symptom_clean}\b', regex=True, flags=re.IGNORECASE)
|
277 |
-
]
|
278 |
-
if not matches.empty:
|
279 |
-
matches = matches[matches['Condition'] == condition]
|
280 |
-
return matches['Risk Score'].values[0] if not matches.empty else 0
|
281 |
-
return 0
|
282 |
-
|
283 |
-
def calculate_risk_score(text):
|
284 |
-
entities = pipe(text)
|
285 |
-
merged_entities = merge_entities(entities, text)
|
286 |
-
|
287 |
-
score = 0
|
288 |
-
breakdown = []
|
289 |
-
for ent in merged_entities:
|
290 |
-
if ent['entity_group'] == "Sign_symptom":
|
291 |
-
symptom = ent['word'].strip().lower()
|
292 |
-
condition = determine_condition(text, ent)
|
293 |
-
risk = get_risk_score(symptom, condition)
|
294 |
-
score += risk
|
295 |
-
breakdown.append({
|
296 |
-
'symptom': symptom.capitalize(),
|
297 |
-
'condition': condition,
|
298 |
-
'risk': risk
|
299 |
-
})
|
300 |
-
return score, breakdown
|
301 |
-
|
302 |
def initialize_groq_client():
|
303 |
try:
|
304 |
# Try to get the API key from Streamlit secrets
|
@@ -306,7 +132,7 @@ def initialize_groq_client():
|
|
306 |
try:
|
307 |
api_key = st.secrets.get("GROQ_API_KEY", os.getenv("GROQ_API_KEY"))
|
308 |
except FileNotFoundError:
|
309 |
-
st.warning("No secrets.toml file found. Please create one in the
|
310 |
|
311 |
# If not found, prompt the user to enter it
|
312 |
if not api_key:
|
@@ -343,9 +169,7 @@ def symptom_interrogation_step():
|
|
343 |
focusing on {focus} to differentiate serious causes. Your task is to have a polite and simple conversation with a patient.
|
344 |
Start by asking ONE specific follow-up question about their initial symptom: {main_symptom}.
|
345 |
Ask only one question at a time to avoid overwhelming the patient.
|
346 |
-
Keep your language clear, professional, and easy to understand.
|
347 |
-
|
348 |
-
Dont display possibe symptoms or why you are asking questions."""
|
349 |
|
350 |
messages = [
|
351 |
{"role": "system", "content": "Ask focused clinical questions. One at a time."},
|
@@ -382,7 +206,7 @@ def handle_symptom_interrogation():
|
|
382 |
|
383 |
if 'current_question' in st.session_state:
|
384 |
with st.form("symptom_qna"):
|
385 |
-
st.markdown(f'<div class="dr-message"
|
386 |
answer = st.text_input("Your answer:", key=f"answer_{len(st.session_state.symptom_details)}")
|
387 |
|
388 |
if st.form_submit_button("Next"):
|
@@ -458,41 +282,40 @@ def generate_risk_assessment():
|
|
458 |
)
|
459 |
|
460 |
patient_profile = f"""
|
461 |
-
|
462 |
Name: {st.session_state.patient_info['name']}
|
463 |
Age: {st.session_state.patient_info['age']}
|
464 |
Gender: {st.session_state.patient_info['gender']}
|
465 |
|
466 |
-
|
467 |
{st.session_state.patient_info['main_symptom']}
|
468 |
|
469 |
-
|
470 |
{symptom_log}
|
471 |
|
472 |
-
|
473 |
{st.session_state.patient_info.get('medical_history', 'None reported')}
|
474 |
|
475 |
-
|
476 |
{st.session_state.patient_info.get('medications', 'None')}
|
477 |
|
478 |
-
|
479 |
{st.session_state.patient_info.get('allergies', 'None reported')}
|
480 |
|
481 |
-
|
482 |
Last Meal: {st.session_state.patient_info.get('last_meal', 'Unknown')}
|
483 |
Recent Travel: {st.session_state.patient_info.get('recent_travel', 'None')}
|
484 |
"""
|
485 |
|
486 |
analysis_prompt = f"""STRICTLY follow these instructions:
|
487 |
1. Analyze this case: {patient_profile}
|
488 |
-
2.
|
489 |
-
|
490 |
-
[Age]-year-old [gender] with [specific, present symptoms].
|
491 |
|
492 |
Example Output:
|
493 |
"45-year-old man with severe chest pain radiating to the jaw"
|
494 |
|
495 |
-
Your Output:"""
|
496 |
|
497 |
response = st.session_state.client.chat.completions.create(
|
498 |
messages=[
|
@@ -507,42 +330,11 @@ Your Output:"""
|
|
507 |
risk_prompt = response.choices[0].message.content.strip('"')
|
508 |
|
509 |
st.subheader("Clinical Summary")
|
510 |
-
st.markdown(f"
|
511 |
|
512 |
-
# Add risk scoring
|
513 |
-
risk_score, breakdown = calculate_risk_score(risk_prompt)
|
514 |
-
|
515 |
-
# Display risk score with color coding
|
516 |
-
score_color = "#2ecc71" if risk_score < 40 else "#f1c40f" if risk_score < 70 else "#e74c3c"
|
517 |
-
st.markdown(f"""
|
518 |
-
<div style="background: {score_color};
|
519 |
-
color: white;
|
520 |
-
padding: 1.5rem;
|
521 |
-
border-radius: 10px;
|
522 |
-
text-align: center;
|
523 |
-
margin: 2rem 0;">
|
524 |
-
<h2 style="color: white; margin: 0;">Risk Assessment Score</h2>
|
525 |
-
<h1 style="font-size: 3.5rem; margin: 0.5rem 0;">{risk_score}/100</h1>
|
526 |
-
<p>{'Low Risk' if risk_score < 40 else 'Moderate Risk' if risk_score < 70 else 'High Risk'}</p>
|
527 |
-
</div>
|
528 |
-
""", unsafe_allow_html=True)
|
529 |
-
|
530 |
-
# Display breakdown
|
531 |
-
with st.expander("View Detailed Risk Breakdown", expanded=True):
|
532 |
-
for item in breakdown:
|
533 |
-
st.markdown(f"""
|
534 |
-
<div style="background: rgba(236, 240, 241, 0.5);
|
535 |
-
padding: 1rem;
|
536 |
-
border-radius: 8px;
|
537 |
-
margin: 0.5rem 0;">
|
538 |
-
<strong>{item['symptom']}</strong> ({item['condition']})
|
539 |
-
<div style="float: right;">+{item['risk']} pts</div>
|
540 |
-
</div>
|
541 |
-
""", unsafe_allow_html=True)
|
542 |
-
|
543 |
# Create download button
|
544 |
timestamp = datetime.now().strftime('%Y%m%d%H%M')
|
545 |
-
filename = f"{st.session_state.patient_info['name'].replace(' ', '')}
|
546 |
st.download_button(
|
547 |
label="Download Assessment",
|
548 |
data=risk_prompt,
|
@@ -592,5 +384,5 @@ def main():
|
|
592 |
if current_step in steps:
|
593 |
steps[current_step]()
|
594 |
|
595 |
-
if __name__ == "
|
596 |
main()
|
|
|
2 |
import os
|
3 |
from groq import Groq
|
4 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Set page config FIRST
|
7 |
st.set_page_config(page_title="AI Medical Consultancy", layout="wide")
|
|
|
9 |
# Custom CSS for styling
|
10 |
st.markdown("""
|
11 |
<style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
/* Main container styling */
|
13 |
.stApp {
|
14 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
15 |
font-family: 'Arial', sans-serif;
|
16 |
}
|
17 |
|
18 |
/* Headers styling */
|
19 |
h1, h2, h3 {
|
20 |
+
color: #2c3e50 !important;
|
21 |
+
border-bottom: 2px solid #3498db;
|
22 |
padding-bottom: 0.3em;
|
23 |
}
|
24 |
|
25 |
/* Form containers */
|
26 |
.stForm {
|
27 |
+
background: rgba(255, 255, 255, 0.9);
|
|
|
28 |
border-radius: 15px;
|
29 |
padding: 2rem;
|
30 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
31 |
margin: 1rem 0;
|
32 |
}
|
33 |
|
34 |
/* Input fields */
|
35 |
+
.stTextInput input, .stNumberInput input, .stSelectbox select, .stTextArea textarea {
|
36 |
+
border: 2px solid #3498db !important;
|
37 |
+
border-radius: 8px !important;
|
38 |
+
padding: 0.8rem !important;
|
39 |
+
transition: all 0.3s ease;
|
|
|
|
|
|
|
40 |
}
|
41 |
|
42 |
.stTextInput input:focus, .stNumberInput input:focus,
|
43 |
.stSelectbox select:focus, .stTextArea textarea:focus {
|
44 |
+
border-color: #2980b9 !important;
|
45 |
+
box-shadow: 0 0 8px rgba(52, 152, 219, 0.3) !important;
|
|
|
|
|
46 |
}
|
47 |
|
48 |
/* Buttons styling */
|
49 |
.stButton>button {
|
50 |
+
background: linear-gradient(135deg, #3498db 0%, #2980b9 100%) !important;
|
51 |
+
color: white !important;
|
52 |
border: none !important;
|
53 |
+
border-radius: 8px !important;
|
54 |
+
padding: 0.8rem 1.5rem !important;
|
55 |
font-size: 1rem !important;
|
56 |
+
transition: transform 0.2s ease;
|
|
|
|
|
57 |
}
|
58 |
|
59 |
.stButton>button:hover {
|
60 |
transform: translateY(-2px);
|
61 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
}
|
63 |
|
64 |
/* Progress indicator */
|
|
|
69 |
padding: 1rem;
|
70 |
background: rgba(255, 255, 255, 0.9);
|
71 |
border-radius: 10px;
|
|
|
72 |
}
|
73 |
|
74 |
.step {
|
75 |
flex: 1;
|
76 |
text-align: center;
|
77 |
+
padding: 0.5rem;
|
78 |
+
font-weight: bold;
|
79 |
+
color: #7f8c8d;
|
|
|
80 |
}
|
81 |
|
82 |
.step.active {
|
83 |
+
color: #3498db;
|
84 |
+
border-bottom: 3px solid #3498db;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
}
|
86 |
|
87 |
/* Chat bubbles */
|
88 |
.dr-message {
|
89 |
+
background: #3498db;
|
90 |
color: white;
|
91 |
+
border-radius: 15px;
|
92 |
+
padding: 1rem;
|
93 |
margin: 1rem 0;
|
94 |
max-width: 80%;
|
95 |
width: fit-content;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
}
|
97 |
|
98 |
/* Emergency alert */
|
99 |
.emergency-alert {
|
100 |
+
background: #e74c3c;
|
101 |
color: white;
|
102 |
padding: 2rem;
|
103 |
border-radius: 15px;
|
104 |
animation: pulse 1.5s infinite;
|
|
|
105 |
}
|
106 |
|
107 |
@keyframes pulse {
|
|
|
112 |
|
113 |
/* Download button */
|
114 |
.download-btn {
|
115 |
+
background: linear-gradient(135deg, #2ecc71 0%, #27ae60 100%) !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
}
|
117 |
</style>
|
118 |
""", unsafe_allow_html=True)
|
119 |
|
|
|
120 |
# Initialize session state variables
|
121 |
if 'current_step' not in st.session_state:
|
122 |
st.session_state.current_step = 0
|
|
|
125 |
if 'patient_info' not in st.session_state:
|
126 |
st.session_state.patient_info = {}
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def initialize_groq_client():
|
129 |
try:
|
130 |
# Try to get the API key from Streamlit secrets
|
|
|
132 |
try:
|
133 |
api_key = st.secrets.get("GROQ_API_KEY", os.getenv("GROQ_API_KEY"))
|
134 |
except FileNotFoundError:
|
135 |
+
st.warning("No `secrets.toml` file found. Please create one in the `.streamlit` folder.")
|
136 |
|
137 |
# If not found, prompt the user to enter it
|
138 |
if not api_key:
|
|
|
169 |
focusing on {focus} to differentiate serious causes. Your task is to have a polite and simple conversation with a patient.
|
170 |
Start by asking ONE specific follow-up question about their initial symptom: {main_symptom}.
|
171 |
Ask only one question at a time to avoid overwhelming the patient.
|
172 |
+
Keep your language clear, professional, and easy to understand."""
|
|
|
|
|
173 |
|
174 |
messages = [
|
175 |
{"role": "system", "content": "Ask focused clinical questions. One at a time."},
|
|
|
206 |
|
207 |
if 'current_question' in st.session_state:
|
208 |
with st.form("symptom_qna"):
|
209 |
+
st.markdown(f'<div class="dr-message">👨⚕️ {st.session_state.current_question}</div>', unsafe_allow_html=True)
|
210 |
answer = st.text_input("Your answer:", key=f"answer_{len(st.session_state.symptom_details)}")
|
211 |
|
212 |
if st.form_submit_button("Next"):
|
|
|
282 |
)
|
283 |
|
284 |
patient_profile = f"""
|
285 |
+
**Patient Profile**
|
286 |
Name: {st.session_state.patient_info['name']}
|
287 |
Age: {st.session_state.patient_info['age']}
|
288 |
Gender: {st.session_state.patient_info['gender']}
|
289 |
|
290 |
+
**Primary Complaint**
|
291 |
{st.session_state.patient_info['main_symptom']}
|
292 |
|
293 |
+
**Symptom Interrogation**
|
294 |
{symptom_log}
|
295 |
|
296 |
+
**Medical History**
|
297 |
{st.session_state.patient_info.get('medical_history', 'None reported')}
|
298 |
|
299 |
+
**Current Medications**
|
300 |
{st.session_state.patient_info.get('medications', 'None')}
|
301 |
|
302 |
+
**Allergies**
|
303 |
{st.session_state.patient_info.get('allergies', 'None reported')}
|
304 |
|
305 |
+
**Recent Context**
|
306 |
Last Meal: {st.session_state.patient_info.get('last_meal', 'Unknown')}
|
307 |
Recent Travel: {st.session_state.patient_info.get('recent_travel', 'None')}
|
308 |
"""
|
309 |
|
310 |
analysis_prompt = f"""STRICTLY follow these instructions:
|
311 |
1. Analyze this case: {patient_profile}
|
312 |
+
2. Output ONLY this exact format WITHOUT ANY additional text:
|
313 |
+
[Age]-year-old [gender] with [symptom details]
|
|
|
314 |
|
315 |
Example Output:
|
316 |
"45-year-old man with severe chest pain radiating to the jaw"
|
317 |
|
318 |
+
Your Output MUST BE:"""
|
319 |
|
320 |
response = st.session_state.client.chat.completions.create(
|
321 |
messages=[
|
|
|
330 |
risk_prompt = response.choices[0].message.content.strip('"')
|
331 |
|
332 |
st.subheader("Clinical Summary")
|
333 |
+
st.markdown(f"```\n{risk_prompt}\n```")
|
334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
# Create download button
|
336 |
timestamp = datetime.now().strftime('%Y%m%d%H%M')
|
337 |
+
filename = f"{st.session_state.patient_info['name'].replace(' ', '_')}_assessment_{timestamp}.txt"
|
338 |
st.download_button(
|
339 |
label="Download Assessment",
|
340 |
data=risk_prompt,
|
|
|
384 |
if current_step in steps:
|
385 |
steps[current_step]()
|
386 |
|
387 |
+
if __name__ == "__main__":
|
388 |
main()
|