File size: 5,106 Bytes
3f50570
 
 
 
11f59f6
3f50570
 
11f59f6
3f50570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11f59f6
3f50570
 
 
 
 
 
 
 
 
 
11f59f6
3f50570
 
11f59f6
 
3f50570
 
 
 
11f59f6
 
3f50570
 
11f59f6
3f50570
 
 
 
11f59f6
3f50570
 
 
11f59f6
d714fce
3f50570
 
d714fce
11f59f6
d714fce
3f50570
11f59f6
d714fce
 
 
 
 
 
 
 
8ddf2f8
 
 
 
 
 
 
d714fce
 
 
 
 
 
 
 
 
 
3f50570
11f59f6
3f50570
11f59f6
d714fce
3f50570
 
11f59f6
 
 
 
3f50570
 
 
11f59f6
3f50570
11f59f6
 
3f50570
11f59f6
 
 
 
d714fce
 
 
 
 
 
 
 
 
 
11f59f6
d714fce
11f59f6
d714fce
11f59f6
 
 
 
3f50570
 
11f59f6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import torch
import librosa
import numpy as np
import gradio as gr
from sonics import HFAudioClassifier

# Model configurations
MODEL_IDS = {
    "SpecTTTra-α (5s)": "awsaf49/sonics-spectttra-alpha-5s",
    "SpecTTTra-β (5s)": "awsaf49/sonics-spectttra-beta-5s",
    "SpecTTTra-γ (5s)": "awsaf49/sonics-spectttra-gamma-5s",
    "SpecTTTra-α (120s)": "awsaf49/sonics-spectttra-alpha-120s",
    "SpecTTTra-β (120s)": "awsaf49/sonics-spectttra-beta-120s",
    "SpecTTTra-γ (120s)": "awsaf49/sonics-spectttra-gamma-120s",
}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_cache = {}

def load_model(model_name):
    """Load model if not already cached"""
    if model_name not in model_cache:
        model_id = MODEL_IDS[model_name]
        model = HFAudioClassifier.from_pretrained(model_id)
        model = model.to(device)
        model.eval()
        model_cache[model_name] = model
    return model_cache[model_name]

def process_audio(audio_path, model_name):
    """Process audio file and return prediction"""
    try:
        model = load_model(model_name)
        max_time = model.config.audio.max_time
        
        # Load and process audio
        audio, sr = librosa.load(audio_path, sr=16000)
        chunk_samples = int(max_time * sr)
        total_chunks = len(audio) // chunk_samples
        middle_chunk_idx = total_chunks // 2
        
        # Extract middle chunk
        start = middle_chunk_idx * chunk_samples
        end = start + chunk_samples
        chunk = audio[start:end]
        
        if len(chunk) < chunk_samples:
            chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
            
        # Get prediction
        with torch.no_grad():
            chunk = torch.from_numpy(chunk).float().to(device)
            pred = model(chunk.unsqueeze(0))
            prob = torch.sigmoid(pred).cpu().numpy()[0]
            
        return {"Real": 1 - prob, "Fake": prob}

    except Exception as e:
        return {"Error": str(e)}

def predict(audio_file, model_name):
    """Gradio interface function"""
    if audio_file is None:
        return {"Message": "Please upload an audio file"}
    return process_audio(audio_file, model_name)

# Create Gradio interface
with gr.Blocks() as demo:
    # Title, Subtitle, and Logo
    gr.HTML(
        """

        <div style="text-align: center;">

            <img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg" 

                 style="max-width: 150px; margin: 0 auto;">

            <h1>SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1>

            <h3>ICLR 2025 [Poster]</h3>

            <p style="font-size: 1.1em; color: #666; margin: 10px 0;">

                Detect if a song is real or AI-generated (created using text-to-song models).

                Upload any audio file to check its authenticity!

            </p>

        </div>

        """
    )
    
    # # Resource Links
    # with gr.Row():
    #     paper_radio = gr.Radio(
    #         choices=["Paper", "Dataset", "ArXiv", "GitHub"],
    #         label="Resources",
    #         info="Click to visit respective links"
    #     )
        
    gr.HTML(
        """

        <div style="text-align: center; margin-bottom: 1rem;">

            <p>

                <a href="https://openreview.net/forum?id=PY7KSh29Z8" target="_blank">📄 Paper</a> |

                <a href="https://huggingface.co/datasets/awsaf49/sonics" target="_blank">🎵 Dataset</a> |

                <a href="https://arxiv.org/abs/2408.14080" target="_blank">🔬 ArXiv</a> |

                <a href="https://github.com/awsaf49/sonics" target="_blank">💻 GitHub</a>

            </p>

        </div>

        """
    )
    
    # Main Interface
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(
                label="Upload Audio File",
                type="filepath"
            )
            model_dropdown = gr.Dropdown(
                choices=list(MODEL_IDS.keys()),
                value="SpecTTTra-γ (5s)",
                label="Select Model"
            )
            submit_btn = gr.Button("Analyze Audio")
        
        with gr.Column():
            output = gr.Label(
                label="Analysis Result",
                num_top_classes=2
            )

    # Link handling for resource radio buttons
    def open_link(choice):
        links = {
            "Paper": "https://openreview.net/forum?id=PY7KSh29Z8",
            "Dataset": "https://huggingface.co/datasets/awsaf49/sonics",
            "ArXiv": "https://arxiv.org/abs/2408.14080",
            "GitHub": "https://github.com/awsaf49/sonics"
        }
        gr.open_url(links[choice])
    
    paper_radio.change(fn=open_link, inputs=[paper_radio])
    
    # Prediction handling
    submit_btn.click(
        fn=predict,
        inputs=[audio_input, model_dropdown],
        outputs=[output]
    )

if __name__ == "__main__":
    demo.launch()