code simplified
Browse files
app.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
import os
|
2 |
-
import math
|
3 |
-
import gradio as gr
|
4 |
import torch
|
5 |
import librosa
|
6 |
-
import pandas as pd
|
7 |
import numpy as np
|
8 |
-
|
9 |
from sonics import HFAudioClassifier
|
10 |
|
11 |
-
|
12 |
-
# Constants
|
13 |
MODEL_IDS = {
|
14 |
"SpecTTTra-α (5s)": "awsaf49/sonics-spectttra-alpha-5s",
|
15 |
"SpecTTTra-β (5s)": "awsaf49/sonics-spectttra-beta-5s",
|
@@ -19,11 +15,9 @@ MODEL_IDS = {
|
|
19 |
"SpecTTTra-γ (120s)": "awsaf49/sonics-spectttra-gamma-120s",
|
20 |
}
|
21 |
|
22 |
-
|
23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
model_cache = {}
|
25 |
|
26 |
-
|
27 |
def load_model(model_name):
|
28 |
"""Load model if not already cached"""
|
29 |
if model_name not in model_cache:
|
@@ -34,21 +28,14 @@ def load_model(model_name):
|
|
34 |
model_cache[model_name] = model
|
35 |
return model_cache[model_name]
|
36 |
|
37 |
-
|
38 |
def process_audio(audio_path, model_name):
|
39 |
"""Process audio file and return prediction"""
|
40 |
try:
|
41 |
-
# Load model
|
42 |
model = load_model(model_name)
|
43 |
-
|
44 |
-
# Get max time from model config
|
45 |
max_time = model.config.audio.max_time
|
46 |
-
|
47 |
# Load and process audio
|
48 |
audio, sr = librosa.load(audio_path, sr=16000)
|
49 |
-
duration = len(audio) / sr
|
50 |
-
|
51 |
-
# Calculate chunk size and middle position
|
52 |
chunk_samples = int(max_time * sr)
|
53 |
total_chunks = len(audio) // chunk_samples
|
54 |
middle_chunk_idx = total_chunks // 2
|
@@ -57,89 +44,74 @@ def process_audio(audio_path, model_name):
|
|
57 |
start = middle_chunk_idx * chunk_samples
|
58 |
end = start + chunk_samples
|
59 |
chunk = audio[start:end]
|
60 |
-
|
61 |
-
# Pad if needed (shouldn't be necessary for middle chunk)
|
62 |
if len(chunk) < chunk_samples:
|
63 |
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
|
64 |
-
|
65 |
-
#
|
66 |
with torch.no_grad():
|
67 |
chunk = torch.from_numpy(chunk).float().to(device)
|
68 |
pred = model(chunk.unsqueeze(0))
|
69 |
prob = torch.sigmoid(pred).cpu().numpy()[0]
|
70 |
-
|
71 |
-
|
72 |
-
output = {"Real": 1 - prob, "Fake": prob}
|
73 |
-
|
74 |
-
return output
|
75 |
|
76 |
except Exception as e:
|
77 |
-
return {
|
78 |
-
"Duration": "Error",
|
79 |
-
"Prediction": f"Error: {str(e)}",
|
80 |
-
"Confidence": "N/A",
|
81 |
-
}
|
82 |
-
|
83 |
|
84 |
def predict(audio_file, model_name):
|
85 |
"""Gradio interface function"""
|
86 |
if audio_file is None:
|
87 |
-
return {
|
88 |
-
"Duration": "No file",
|
89 |
-
"Prediction": "Please upload an audio file",
|
90 |
-
"Confidence": "N/A",
|
91 |
-
}
|
92 |
-
|
93 |
return process_audio(audio_file, model_name)
|
94 |
|
95 |
-
|
96 |
# Create Gradio interface
|
97 |
-
|
98 |
-
.heading {
|
99 |
-
text-align: center;
|
100 |
-
margin-bottom: 2rem;
|
101 |
-
}
|
102 |
-
.logo {
|
103 |
-
max-width: 250px;
|
104 |
-
margin: 0 auto;
|
105 |
-
display: block;
|
106 |
-
}
|
107 |
-
"""
|
108 |
-
|
109 |
-
with gr.Blocks(css=css) as demo:
|
110 |
gr.HTML(
|
111 |
"""
|
112 |
-
<div
|
113 |
-
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg"
|
|
|
114 |
<h1>SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1>
|
115 |
-
<h3
|
116 |
</div>
|
117 |
-
|
118 |
)
|
119 |
-
|
120 |
with gr.Row():
|
121 |
with gr.Column():
|
122 |
-
audio_input = gr.Audio(
|
|
|
|
|
|
|
123 |
model_dropdown = gr.Dropdown(
|
124 |
choices=list(MODEL_IDS.keys()),
|
125 |
value="SpecTTTra-γ (5s)",
|
126 |
-
label="Select Model"
|
127 |
)
|
128 |
-
submit_btn = gr.Button("
|
129 |
-
|
130 |
with gr.Column():
|
131 |
-
output = gr.Label(
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
135 |
gr.Markdown(
|
136 |
"""
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
)
|
144 |
|
145 |
-
|
|
|
|
1 |
import os
|
|
|
|
|
2 |
import torch
|
3 |
import librosa
|
|
|
4 |
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
from sonics import HFAudioClassifier
|
7 |
|
8 |
+
# Model configurations
|
|
|
9 |
MODEL_IDS = {
|
10 |
"SpecTTTra-α (5s)": "awsaf49/sonics-spectttra-alpha-5s",
|
11 |
"SpecTTTra-β (5s)": "awsaf49/sonics-spectttra-beta-5s",
|
|
|
15 |
"SpecTTTra-γ (120s)": "awsaf49/sonics-spectttra-gamma-120s",
|
16 |
}
|
17 |
|
|
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
model_cache = {}
|
20 |
|
|
|
21 |
def load_model(model_name):
|
22 |
"""Load model if not already cached"""
|
23 |
if model_name not in model_cache:
|
|
|
28 |
model_cache[model_name] = model
|
29 |
return model_cache[model_name]
|
30 |
|
|
|
31 |
def process_audio(audio_path, model_name):
|
32 |
"""Process audio file and return prediction"""
|
33 |
try:
|
|
|
34 |
model = load_model(model_name)
|
|
|
|
|
35 |
max_time = model.config.audio.max_time
|
36 |
+
|
37 |
# Load and process audio
|
38 |
audio, sr = librosa.load(audio_path, sr=16000)
|
|
|
|
|
|
|
39 |
chunk_samples = int(max_time * sr)
|
40 |
total_chunks = len(audio) // chunk_samples
|
41 |
middle_chunk_idx = total_chunks // 2
|
|
|
44 |
start = middle_chunk_idx * chunk_samples
|
45 |
end = start + chunk_samples
|
46 |
chunk = audio[start:end]
|
47 |
+
|
|
|
48 |
if len(chunk) < chunk_samples:
|
49 |
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
|
50 |
+
|
51 |
+
# Get prediction
|
52 |
with torch.no_grad():
|
53 |
chunk = torch.from_numpy(chunk).float().to(device)
|
54 |
pred = model(chunk.unsqueeze(0))
|
55 |
prob = torch.sigmoid(pred).cpu().numpy()[0]
|
56 |
+
|
57 |
+
return {"Real": 1 - prob, "Fake": prob}
|
|
|
|
|
|
|
58 |
|
59 |
except Exception as e:
|
60 |
+
return {"Error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
def predict(audio_file, model_name):
|
63 |
"""Gradio interface function"""
|
64 |
if audio_file is None:
|
65 |
+
return {"Message": "Please upload an audio file"}
|
|
|
|
|
|
|
|
|
|
|
66 |
return process_audio(audio_file, model_name)
|
67 |
|
|
|
68 |
# Create Gradio interface
|
69 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
gr.HTML(
|
71 |
"""
|
72 |
+
<div style="text-align: center; margin-bottom: 1rem;">
|
73 |
+
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg"
|
74 |
+
style="max-width: 300px; margin: 0 auto;">
|
75 |
<h1>SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1>
|
76 |
+
<h3>ICLR 2025 [Poster]</h3>
|
77 |
</div>
|
78 |
+
"""
|
79 |
)
|
80 |
+
|
81 |
with gr.Row():
|
82 |
with gr.Column():
|
83 |
+
audio_input = gr.Audio(
|
84 |
+
label="Upload Audio File",
|
85 |
+
type="filepath"
|
86 |
+
)
|
87 |
model_dropdown = gr.Dropdown(
|
88 |
choices=list(MODEL_IDS.keys()),
|
89 |
value="SpecTTTra-γ (5s)",
|
90 |
+
label="Select Model"
|
91 |
)
|
92 |
+
submit_btn = gr.Button("Analyze Audio")
|
93 |
+
|
94 |
with gr.Column():
|
95 |
+
output = gr.Label(
|
96 |
+
label="Analysis Result",
|
97 |
+
num_top_classes=2
|
98 |
+
)
|
99 |
+
|
100 |
gr.Markdown(
|
101 |
"""
|
102 |
+
### Resources
|
103 |
+
- [📄 Paper](https://openreview.net/forum?id=PY7KSh29Z8)
|
104 |
+
- [🎵 Dataset](https://huggingface.co/datasets/awsaf49/sonics)
|
105 |
+
- [🔬 ArXiv](https://arxiv.org/abs/2408.14080)
|
106 |
+
- [💻 GitHub](https://github.com/awsaf49/sonics)
|
107 |
+
"""
|
108 |
+
)
|
109 |
+
|
110 |
+
submit_btn.click(
|
111 |
+
fn=predict,
|
112 |
+
inputs=[audio_input, model_dropdown],
|
113 |
+
outputs=[output]
|
114 |
)
|
115 |
|
116 |
+
if __name__ == "__main__":
|
117 |
+
demo.launch()
|