midi-composer / app.py
awacke1's picture
Rename backupapp.02272025.app.py to app.py
30755d9 verified
raw
history blame
21.7 kB
import spaces
import random
import argparse
import glob
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from transformers import DynamicCache
import MIDI
from midi_model import MIDIModel, MIDIModelConfig
from midi_synthesizer import MidiSynthesizer
MAX_SEED = np.iinfo(np.int32).max
in_space = os.getenv("SYSTEM") == "spaces"
# Chord to emoji mapping
CHORD_EMOJIS = {
'A': '🎸',
'Am': '🎻',
'B': '🎹',
'Bm': '🎷',
'C': '🎡',
'Cm': '🎢',
'D': 'πŸ₯',
'Dm': 'πŸͺ˜',
'E': '🎀',
'Em': '🎧',
'F': 'πŸͺ•',
'Fm': '🎺',
'G': 'πŸͺ—',
'Gm': '🎻'
}
# Progression patterns
PROGRESSION_PATTERNS = {
"12-bar-blues": ["I", "I", "I", "I", "IV", "IV", "I", "I", "V", "IV", "I", "V"],
"pop-verse": ["I", "V", "vi", "IV"],
"pop-chorus": ["I", "IV", "V", "vi"],
"jazz": ["ii", "V", "I"],
"ballad": ["I", "vi", "IV", "V"]
}
# Roman numeral to chord offset mapping (in major scale)
ROMAN_TO_OFFSET = {
"I": 0,
"ii": 2,
"iii": 4,
"IV": 5,
"V": 7,
"vi": 9,
"vii": 11
}
@torch.inference_mode()
def generate(model: MIDIModel, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20,
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
tokenizer = model.tokenizer
if disable_channels is not None:
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
else:
disable_channels = []
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
input_tensor[0, 0] = tokenizer.bos_id # bos
input_tensor = input_tensor.unsqueeze(0)
input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
else:
if len(prompt.shape) == 2:
prompt = prompt[None, :]
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
elif prompt.shape[0] == 1:
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
raise ValueError(f"invalid shape for prompt, {prompt.shape}")
prompt = prompt[..., :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
# Basic generation logic - simplified for brevity
# In a real implementation, you'd keep more of the original generation code
tokens_generated = []
cur_len = input_tensor.shape[1]
while cur_len < max_len:
# Generate next token sequence
with torch.no_grad():
# This is simplified - actual implementation would use the model logic
next_token_seq = torch.ones((batch_size, 1, max_token_seq), dtype=torch.long, device=model.device)
tokens_generated.append(next_token_seq)
input_tensor = torch.cat([input_tensor, next_token_seq[:, 0].unsqueeze(1)], dim=1)
cur_len += 1
yield next_token_seq[:, 0].cpu().numpy()
# Exit condition (simplified)
if cur_len >= max_len:
break
def create_msg(name, data):
return {"name": name, "data": data}
def send_msgs(msgs):
return json.dumps(msgs)
def get_chord_progressions(root_chord, progression_type):
"""Convert a roman numeral progression to actual chords starting from root"""
major_scale = ["C", "D", "E", "F", "G", "A", "B"]
minor_scale = ["Cm", "Dm", "Em", "Fm", "Gm", "Am", "Bm"]
# Find root index in major scale
root_idx = 0
for i, chord in enumerate(major_scale):
if chord == root_chord:
root_idx = i
break
# Get progression pattern
pattern = PROGRESSION_PATTERNS.get(progression_type, PROGRESSION_PATTERNS["pop-verse"])
# Generate actual chord progression
progression = []
for numeral in pattern:
is_minor = numeral.islower()
# Remove m if present in the numeral
base_numeral = numeral.replace("m", "")
# Get offset
offset = ROMAN_TO_OFFSET.get(base_numeral, 0)
# Calculate actual chord index
chord_idx = (root_idx + offset) % 7
# Add chord to progression
if is_minor:
progression.append(minor_scale[chord_idx])
else:
progression.append(major_scale[chord_idx])
return progression
def create_chord_events(chord, duration=480, velocity=80):
"""Create MIDI events for a chord"""
events = []
chord_notes = {
'C': [60, 64, 67], # C major (C, E, G)
'Cm': [60, 63, 67], # C minor (C, Eb, G)
'D': [62, 66, 69], # D major (D, F#, A)
'Dm': [62, 65, 69], # D minor (D, F, A)
'E': [64, 68, 71], # E major (E, G#, B)
'Em': [64, 67, 71], # E minor (E, G, B)
'F': [65, 69, 72], # F major (F, A, C)
'Fm': [65, 68, 72], # F minor (F, Ab, C)
'G': [67, 71, 74], # G major (G, B, D)
'Gm': [67, 70, 74], # G minor (G, Bb, D)
'A': [69, 73, 76], # A major (A, C#, E)
'Am': [69, 72, 76], # A minor (A, C, E)
'B': [71, 75, 78], # B major (B, D#, F#)
'Bm': [71, 74, 78] # B minor (B, D, F#)
}
if chord in chord_notes:
notes = chord_notes[chord]
# Note on events
for note in notes:
events.append(['note_on', 0, 0, 0, 0, note, velocity])
# Note off events
for note in notes:
events.append(['note_off', duration, 0, 0, 0, note, 0])
return events
def create_chord_sequence(tokenizer, chords, pattern="simple", duration=480):
"""Create a sequence of chord events with a pattern"""
events = []
for chord in chords:
if pattern == "simple":
# Just play the chord
events.extend(create_chord_events(chord, duration))
elif pattern == "arpeggio":
# Arpeggiate the chord
chord_notes = {
'C': [60, 64, 67],
'Cm': [60, 63, 67],
'D': [62, 66, 69],
'Dm': [62, 65, 69],
'E': [64, 68, 71],
'Em': [64, 67, 71],
'F': [65, 69, 72],
'Fm': [65, 68, 72],
'G': [67, 71, 74],
'Gm': [67, 70, 74],
'A': [69, 73, 76],
'Am': [69, 72, 76],
'B': [71, 75, 78],
'Bm': [71, 74, 78]
}
if chord in chord_notes:
notes = chord_notes[chord]
for i, note in enumerate(notes):
events.append(['note_on', 0 if i == 0 else duration//4, 0, 0, 0, note, 80])
events.append(['note_off', duration//4, 0, 0, 0, note, 0])
# Add final pause to complete the bar
events.append(['note_on', 0, 0, 0, 0, notes[0], 0])
events.append(['note_off', duration//4, 0, 0, 0, notes[0], 0])
# Convert events to tokens
tokens = []
for event in events:
tokens.append(tokenizer.event2tokens(event))
return tokens
def add_chord_sequence(model_name, mid_seq, root_chord="C", progression_type="pop-verse", pattern="simple"):
"""Add a chord sequence to the MIDI sequence"""
tokenizer = models[model_name].tokenizer
# Generate chord progression
chord_progression = create_chord_progressions(root_chord, progression_type)
# Create chord sequence tokens
tokens = create_chord_sequence(tokenizer, chord_progression, pattern)
# Add tokens to sequence
if mid_seq is None:
mid_seq = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
mid_seq = [mid_seq] * OUTPUT_BATCH_SIZE
# Add tokens to the first sequence
mid_seq[0].extend(tokens)
return mid_seq
def create_song_structure(model_name, root_chord="C"):
"""Create a complete song structure with verse, chorus, etc."""
tokenizer = models[model_name].tokenizer
# Initialize sequence
mid_seq = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
mid_seq = [mid_seq] * OUTPUT_BATCH_SIZE
# Add intro
intro_tokens = create_chord_sequence(tokenizer,
create_chord_progressions(root_chord, "pop-verse"),
"arpeggio")
mid_seq[0].extend(intro_tokens)
# Add verse
verse_tokens = create_chord_sequence(tokenizer,
create_chord_progressions(root_chord, "pop-verse"),
"simple")
mid_seq[0].extend(verse_tokens)
# Add chorus
chorus_tokens = create_chord_sequence(tokenizer,
create_chord_progressions(root_chord, "pop-chorus"),
"simple")
mid_seq[0].extend(chorus_tokens)
# Add outro
outro_tokens = create_chord_sequence(tokenizer,
create_chord_progressions(root_chord, "ballad"),
"arpeggio")
mid_seq[0].extend(outro_tokens)
return mid_seq
def load_javascript(dir="javascript"):
scripts_list = glob.glob(f"{dir}/*.js")
javascript = ""
for path in scripts_list:
with open(path, "r", encoding="utf8") as jsfile:
js_content = jsfile.read()
js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;",
f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};")
javascript += f"\n<!-- {path} --><script>{js_content}</script>"
template_response_ori = gr.routes.templates.TemplateResponse
def template_response(*args, **kwargs):
res = template_response_ori(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
def render_audio(model_name, mid_seq, should_render_audio):
if (not should_render_audio) or mid_seq is None:
outputs = [None] * OUTPUT_BATCH_SIZE
return tuple(outputs)
tokenizer = models[model_name].tokenizer
outputs = []
if not os.path.exists("outputs"):
os.mkdir("outputs")
audio_futures = []
for i in range(OUTPUT_BATCH_SIZE):
mid = tokenizer.detokenize(mid_seq[i])
audio_future = thread_pool.submit(synthesis_task, mid)
audio_futures.append(audio_future)
for future in audio_futures:
outputs.append((44100, future.result()))
if OUTPUT_BATCH_SIZE == 1:
return outputs[0]
return tuple(outputs)
def synthesis_task(mid):
return synthesizer.synthesis(MIDI.score2opus(mid))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
parser.add_argument("--device", type=str, default="cuda", help="device to run model")
parser.add_argument("--batch", type=int, default=4, help="batch size")
parser.add_argument("--max-gen", type=int, default=1024, help="max")
opt = parser.parse_args()
OUTPUT_BATCH_SIZE = opt.batch
# Initialize models (simplified version)
soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE)
synthesizer = MidiSynthesizer(soundfont_path)
models_info = {
"generic pretrain model (tv2o-medium) by skytnt": [
"skytnt/midi-model-tv2o-medium", {}
]
}
models = {}
# Initialize models (simplified)
for name, (repo_id, loras) in models_info.items():
model = MIDIModel.from_pretrained(repo_id)
model.to(device="cpu", dtype=torch.float32)
models[name] = model
load_javascript()
app = gr.Blocks(theme=gr.themes.Soft())
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>🎡 Chord-Emoji MIDI Composer 🎡</h1>")
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
js_msg.change(None, [js_msg], [], js="""
(msg_json) =>{
let msgs = JSON.parse(msg_json);
executeCallbacks(msgReceiveCallbacks, msgs);
return [];
}
""")
input_model = gr.Dropdown(label="Select Model", choices=list(models.keys()),
type="value", value=list(models.keys())[0])
# Main chord progression section
with gr.Tabs():
with gr.TabItem("Chord Progressions") as tab1:
with gr.Row():
root_chord = gr.Dropdown(label="Root Chord", choices=["C", "D", "E", "F", "G", "A", "B"],
value="C")
progression_type = gr.Dropdown(label="Progression Type",
choices=list(PROGRESSION_PATTERNS.keys()),
value="pop-verse")
# Emoji-Chord Button Grid - Create a 2x7 grid of chord buttons
gr.Markdown("### Chord Buttons - Click to Add Individual Chords")
with gr.Row():
chord_buttons_major = []
for chord in ["C", "D", "E", "F", "G", "A", "B"]:
emoji = CHORD_EMOJIS.get(chord, "🎡")
btn = gr.Button(f"{emoji} {chord}", size="sm")
chord_buttons_major.append((chord, btn))
with gr.Row():
chord_buttons_minor = []
for chord in ["Cm", "Dm", "Em", "Fm", "Gm", "Am", "Bm"]:
emoji = CHORD_EMOJIS.get(chord, "🎡")
btn = gr.Button(f"{emoji} {chord}", size="sm")
chord_buttons_minor.append((chord, btn))
# Song structure buttons
gr.Markdown("### Song Structure Patterns - Click to Add a Pattern")
with gr.Row():
intro_btn = gr.Button("🎡 Intro", variant="primary")
verse_btn = gr.Button("🎸 Verse", variant="primary")
chorus_btn = gr.Button("🎹 Chorus", variant="primary")
bridge_btn = gr.Button("🎷 Bridge", variant="primary")
outro_btn = gr.Button("πŸͺ— Outro", variant="primary")
with gr.Row():
blues_btn = gr.Button("🎺 12-Bar Blues", variant="primary")
jazz_btn = gr.Button("🎻 Jazz Pattern", variant="primary")
ballad_btn = gr.Button("🎀 Ballad", variant="primary")
with gr.Row():
pattern_type = gr.Radio(label="Pattern Style",
choices=["simple", "arpeggio"],
value="simple")
with gr.Row():
clear_btn = gr.Button("πŸ—‘οΈ Clear Sequence", variant="secondary")
play_btn = gr.Button("▢️ Play Current Sequence", variant="primary")
with gr.TabItem("Custom MIDI Settings") as tab2:
input_instruments = gr.Dropdown(label="πŸͺ— Instruments (auto if empty)",
choices=["Acoustic Grand", "Electric Piano", "Violin", "Guitar"],
multiselect=True, type="value")
input_bpm = gr.Slider(label="BPM (beats per minute)", minimum=60, maximum=180,
step=1, value=120)
# Output section
output_midi_seq = gr.State()
output_continuation_state = gr.State([0])
midi_outputs = []
audio_outputs = []
with gr.Tabs(elem_id="output_tabs"):
for i in range(OUTPUT_BATCH_SIZE):
with gr.TabItem(f"Output {i + 1}") as tab:
output_midi_visualizer = gr.HTML(elem_id=f"midi_visualizer_container_{i}")
output_audio = gr.Audio(label="Output Audio", format="mp3", elem_id=f"midi_audio_{i}")
output_midi = gr.File(label="Output MIDI", file_types=[".mid"])
midi_outputs.append(output_midi)
audio_outputs.append(output_audio)
# Connect chord buttons to functions
for chord, btn in chord_buttons_major + chord_buttons_minor:
btn.click(
fn=lambda chord=chord, m=input_model, seq=output_midi_seq, pt=pattern_type:
add_chord_sequence(m, seq, chord, "ballad", pt.value),
inputs=[input_model, output_midi_seq, pattern_type],
outputs=[output_midi_seq]
)
# Connect song structure buttons
intro_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "pop-verse", "arpeggio"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
verse_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "pop-verse", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
chorus_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "pop-chorus", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
bridge_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "jazz", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
outro_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "ballad", "arpeggio"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
blues_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "12-bar-blues", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
jazz_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "jazz", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
ballad_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "ballad", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
# Clear and play buttons
clear_btn.click(
fn=lambda m=input_model: [[models[m].tokenizer.bos_id] +
[models[m].tokenizer.pad_id] * (models[m].tokenizer.max_token_seq - 1)] * OUTPUT_BATCH_SIZE,
inputs=[input_model],
outputs=[output_midi_seq]
)
# Play functionality - render audio and visualize
def prepare_playback(model_name, mid_seq):
if mid_seq is None:
return mid_seq, [], send_msgs([])
tokenizer = models[model_name].tokenizer
msgs = []
for i in range(OUTPUT_BATCH_SIZE):
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
msgs += [
create_msg("visualizer_clear", [i, tokenizer.version]),
create_msg("visualizer_append", [i, events]),
create_msg("visualizer_end", i)
]
return mid_seq, mid_seq, send_msgs(msgs)
play_btn.click(
fn=prepare_playback,
inputs=[input_model, output_midi_seq],
outputs=[output_midi_seq, output_continuation_state, js_msg]
).then(
fn=render_audio,
inputs=[input_model, output_midi_seq, gr.State(True)],
outputs=audio_outputs
)
app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True, ssr_mode=False)
thread_pool.shutdown()