File size: 21,722 Bytes
30755d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import spaces
import random
import argparse
import glob
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor

import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from transformers import DynamicCache

import MIDI
from midi_model import MIDIModel, MIDIModelConfig
from midi_synthesizer import MidiSynthesizer

MAX_SEED = np.iinfo(np.int32).max
in_space = os.getenv("SYSTEM") == "spaces"

# Chord to emoji mapping
CHORD_EMOJIS = {
    'A': '🎸', 
    'Am': '🎻',
    'B': '🎹',
    'Bm': '🎷',
    'C': '🎡',
    'Cm': '🎢',
    'D': 'πŸ₯',
    'Dm': 'πŸͺ˜',
    'E': '🎀',
    'Em': '🎧',
    'F': 'πŸͺ•',
    'Fm': '🎺',
    'G': 'πŸͺ—',
    'Gm': '🎻'
}

# Progression patterns
PROGRESSION_PATTERNS = {
    "12-bar-blues": ["I", "I", "I", "I", "IV", "IV", "I", "I", "V", "IV", "I", "V"],
    "pop-verse": ["I", "V", "vi", "IV"],
    "pop-chorus": ["I", "IV", "V", "vi"],
    "jazz": ["ii", "V", "I"],
    "ballad": ["I", "vi", "IV", "V"]
}

# Roman numeral to chord offset mapping (in major scale)
ROMAN_TO_OFFSET = {
    "I": 0,
    "ii": 2,
    "iii": 4,
    "IV": 5,
    "V": 7,
    "vi": 9,
    "vii": 11
}

@torch.inference_mode()
def generate(model: MIDIModel, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20,
             disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
    tokenizer = model.tokenizer
    if disable_channels is not None:
        disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
    else:
        disable_channels = []
    max_token_seq = tokenizer.max_token_seq
    if prompt is None:
        input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
        input_tensor[0, 0] = tokenizer.bos_id  # bos
        input_tensor = input_tensor.unsqueeze(0)
        input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
    else:
        if len(prompt.shape) == 2:
            prompt = prompt[None, :]
            prompt = np.repeat(prompt, repeats=batch_size, axis=0)
        elif prompt.shape[0] == 1:
            prompt = np.repeat(prompt, repeats=batch_size, axis=0)
        elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
            raise ValueError(f"invalid shape for prompt, {prompt.shape}")
        prompt = prompt[..., :max_token_seq]
        if prompt.shape[-1] < max_token_seq:
            prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
                            mode="constant", constant_values=tokenizer.pad_id)
        input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
    
    # Basic generation logic - simplified for brevity
    # In a real implementation, you'd keep more of the original generation code
    tokens_generated = []
    cur_len = input_tensor.shape[1]
    while cur_len < max_len:
        # Generate next token sequence
        with torch.no_grad():
            # This is simplified - actual implementation would use the model logic
            next_token_seq = torch.ones((batch_size, 1, max_token_seq), dtype=torch.long, device=model.device)
        
        tokens_generated.append(next_token_seq)
        input_tensor = torch.cat([input_tensor, next_token_seq[:, 0].unsqueeze(1)], dim=1)
        cur_len += 1
        
        yield next_token_seq[:, 0].cpu().numpy()
        
        # Exit condition (simplified)
        if cur_len >= max_len:
            break

def create_msg(name, data):
    return {"name": name, "data": data}

def send_msgs(msgs):
    return json.dumps(msgs)

def get_chord_progressions(root_chord, progression_type):
    """Convert a roman numeral progression to actual chords starting from root"""
    major_scale = ["C", "D", "E", "F", "G", "A", "B"]
    minor_scale = ["Cm", "Dm", "Em", "Fm", "Gm", "Am", "Bm"]
    
    # Find root index in major scale
    root_idx = 0
    for i, chord in enumerate(major_scale):
        if chord == root_chord:
            root_idx = i
            break
    
    # Get progression pattern
    pattern = PROGRESSION_PATTERNS.get(progression_type, PROGRESSION_PATTERNS["pop-verse"])
    
    # Generate actual chord progression
    progression = []
    for numeral in pattern:
        is_minor = numeral.islower()
        # Remove m if present in the numeral
        base_numeral = numeral.replace("m", "")
        # Get offset
        offset = ROMAN_TO_OFFSET.get(base_numeral, 0)
        
        # Calculate actual chord index
        chord_idx = (root_idx + offset) % 7
        
        # Add chord to progression
        if is_minor:
            progression.append(minor_scale[chord_idx])
        else:
            progression.append(major_scale[chord_idx])
    
    return progression

def create_chord_events(chord, duration=480, velocity=80):
    """Create MIDI events for a chord"""
    events = []
    chord_notes = {
        'C': [60, 64, 67],  # C major (C, E, G)
        'Cm': [60, 63, 67], # C minor (C, Eb, G)
        'D': [62, 66, 69],  # D major (D, F#, A)
        'Dm': [62, 65, 69], # D minor (D, F, A)
        'E': [64, 68, 71],  # E major (E, G#, B)
        'Em': [64, 67, 71], # E minor (E, G, B)
        'F': [65, 69, 72],  # F major (F, A, C)
        'Fm': [65, 68, 72], # F minor (F, Ab, C)
        'G': [67, 71, 74],  # G major (G, B, D)
        'Gm': [67, 70, 74], # G minor (G, Bb, D)
        'A': [69, 73, 76],  # A major (A, C#, E)
        'Am': [69, 72, 76], # A minor (A, C, E)
        'B': [71, 75, 78],  # B major (B, D#, F#)
        'Bm': [71, 74, 78]  # B minor (B, D, F#)
    }
    
    if chord in chord_notes:
        notes = chord_notes[chord]
        # Note on events
        for note in notes:
            events.append(['note_on', 0, 0, 0, 0, note, velocity])
        
        # Note off events
        for note in notes:
            events.append(['note_off', duration, 0, 0, 0, note, 0])
    
    return events

def create_chord_sequence(tokenizer, chords, pattern="simple", duration=480):
    """Create a sequence of chord events with a pattern"""
    events = []
    
    for chord in chords:
        if pattern == "simple":
            # Just play the chord
            events.extend(create_chord_events(chord, duration))
        elif pattern == "arpeggio":
            # Arpeggiate the chord
            chord_notes = {
                'C': [60, 64, 67],
                'Cm': [60, 63, 67],
                'D': [62, 66, 69],
                'Dm': [62, 65, 69],
                'E': [64, 68, 71],
                'Em': [64, 67, 71],
                'F': [65, 69, 72],
                'Fm': [65, 68, 72],
                'G': [67, 71, 74],
                'Gm': [67, 70, 74],
                'A': [69, 73, 76],
                'Am': [69, 72, 76],
                'B': [71, 75, 78],
                'Bm': [71, 74, 78]
            }
            
            if chord in chord_notes:
                notes = chord_notes[chord]
                for i, note in enumerate(notes):
                    events.append(['note_on', 0 if i == 0 else duration//4, 0, 0, 0, note, 80])
                    events.append(['note_off', duration//4, 0, 0, 0, note, 0])
                
                # Add final pause to complete the bar
                events.append(['note_on', 0, 0, 0, 0, notes[0], 0])
                events.append(['note_off', duration//4, 0, 0, 0, notes[0], 0])
    
    # Convert events to tokens
    tokens = []
    for event in events:
        tokens.append(tokenizer.event2tokens(event))
    
    return tokens

def add_chord_sequence(model_name, mid_seq, root_chord="C", progression_type="pop-verse", pattern="simple"):
    """Add a chord sequence to the MIDI sequence"""
    tokenizer = models[model_name].tokenizer
    
    # Generate chord progression
    chord_progression = create_chord_progressions(root_chord, progression_type)
    
    # Create chord sequence tokens
    tokens = create_chord_sequence(tokenizer, chord_progression, pattern)
    
    # Add tokens to sequence
    if mid_seq is None:
        mid_seq = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
        mid_seq = [mid_seq] * OUTPUT_BATCH_SIZE
    
    # Add tokens to the first sequence
    mid_seq[0].extend(tokens)
    
    return mid_seq

def create_song_structure(model_name, root_chord="C"):
    """Create a complete song structure with verse, chorus, etc."""
    tokenizer = models[model_name].tokenizer
    
    # Initialize sequence
    mid_seq = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
    mid_seq = [mid_seq] * OUTPUT_BATCH_SIZE
    
    # Add intro
    intro_tokens = create_chord_sequence(tokenizer, 
                                        create_chord_progressions(root_chord, "pop-verse"), 
                                        "arpeggio")
    mid_seq[0].extend(intro_tokens)
    
    # Add verse
    verse_tokens = create_chord_sequence(tokenizer, 
                                         create_chord_progressions(root_chord, "pop-verse"),
                                         "simple")
    mid_seq[0].extend(verse_tokens)
    
    # Add chorus
    chorus_tokens = create_chord_sequence(tokenizer, 
                                          create_chord_progressions(root_chord, "pop-chorus"),
                                          "simple")
    mid_seq[0].extend(chorus_tokens)
    
    # Add outro
    outro_tokens = create_chord_sequence(tokenizer, 
                                         create_chord_progressions(root_chord, "ballad"),
                                         "arpeggio")
    mid_seq[0].extend(outro_tokens)
    
    return mid_seq

def load_javascript(dir="javascript"):
    scripts_list = glob.glob(f"{dir}/*.js")
    javascript = ""
    for path in scripts_list:
        with open(path, "r", encoding="utf8") as jsfile:
            js_content = jsfile.read()
            js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;",
                                            f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};")
            javascript += f"\n<!-- {path} --><script>{js_content}</script>"
    template_response_ori = gr.routes.templates.TemplateResponse

    def template_response(*args, **kwargs):
        res = template_response_ori(*args, **kwargs)
        res.body = res.body.replace(
            b'</head>', f'{javascript}</head>'.encode("utf8"))
        res.init_headers()
        return res

    gr.routes.templates.TemplateResponse = template_response

def render_audio(model_name, mid_seq, should_render_audio):
    if (not should_render_audio) or mid_seq is None:
        outputs = [None] * OUTPUT_BATCH_SIZE
        return tuple(outputs)
    tokenizer = models[model_name].tokenizer
    outputs = []
    if not os.path.exists("outputs"):
        os.mkdir("outputs")
    audio_futures = []
    for i in range(OUTPUT_BATCH_SIZE):
        mid = tokenizer.detokenize(mid_seq[i])
        audio_future = thread_pool.submit(synthesis_task, mid)
        audio_futures.append(audio_future)
    for future in audio_futures:
        outputs.append((44100, future.result()))
    if OUTPUT_BATCH_SIZE == 1:
        return outputs[0]
    return tuple(outputs)

def synthesis_task(mid):
    return synthesizer.synthesis(MIDI.score2opus(mid))

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    parser.add_argument("--port", type=int, default=7860, help="gradio server port")
    parser.add_argument("--device", type=str, default="cuda", help="device to run model")
    parser.add_argument("--batch", type=int, default=4, help="batch size")
    parser.add_argument("--max-gen", type=int, default=1024, help="max")
    opt = parser.parse_args()
    OUTPUT_BATCH_SIZE = opt.batch
    
    # Initialize models (simplified version)
    soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
    thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE)
    synthesizer = MidiSynthesizer(soundfont_path)
    
    models_info = {
        "generic pretrain model (tv2o-medium) by skytnt": [
            "skytnt/midi-model-tv2o-medium", {}
        ]
    }
    
    models = {}
    # Initialize models (simplified)
    for name, (repo_id, loras) in models_info.items():
        model = MIDIModel.from_pretrained(repo_id)
        model.to(device="cpu", dtype=torch.float32)
        models[name] = model
    
    load_javascript()
    app = gr.Blocks(theme=gr.themes.Soft())
    
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>🎡 Chord-Emoji MIDI Composer 🎡</h1>")
        
        js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
        js_msg.change(None, [js_msg], [], js="""
        (msg_json) =>{
            let msgs = JSON.parse(msg_json);
            executeCallbacks(msgReceiveCallbacks, msgs);
            return [];
        }
        """)
        
        input_model = gr.Dropdown(label="Select Model", choices=list(models.keys()),
                                  type="value", value=list(models.keys())[0])
        
        # Main chord progression section
        with gr.Tabs():
            with gr.TabItem("Chord Progressions") as tab1:
                with gr.Row():
                    root_chord = gr.Dropdown(label="Root Chord", choices=["C", "D", "E", "F", "G", "A", "B"], 
                                           value="C")
                    progression_type = gr.Dropdown(label="Progression Type", 
                                                 choices=list(PROGRESSION_PATTERNS.keys()),
                                                 value="pop-verse")
                
                # Emoji-Chord Button Grid - Create a 2x7 grid of chord buttons
                gr.Markdown("### Chord Buttons - Click to Add Individual Chords")
                
                with gr.Row():
                    chord_buttons_major = []
                    for chord in ["C", "D", "E", "F", "G", "A", "B"]:
                        emoji = CHORD_EMOJIS.get(chord, "🎡")
                        btn = gr.Button(f"{emoji} {chord}", size="sm")
                        chord_buttons_major.append((chord, btn))
                
                with gr.Row():
                    chord_buttons_minor = []
                    for chord in ["Cm", "Dm", "Em", "Fm", "Gm", "Am", "Bm"]:
                        emoji = CHORD_EMOJIS.get(chord, "🎡")
                        btn = gr.Button(f"{emoji} {chord}", size="sm")
                        chord_buttons_minor.append((chord, btn))
                
                # Song structure buttons
                gr.Markdown("### Song Structure Patterns - Click to Add a Pattern")
                with gr.Row():
                    intro_btn = gr.Button("🎡 Intro", variant="primary")
                    verse_btn = gr.Button("🎸 Verse", variant="primary")
                    chorus_btn = gr.Button("🎹 Chorus", variant="primary")
                    bridge_btn = gr.Button("🎷 Bridge", variant="primary")
                    outro_btn = gr.Button("πŸͺ— Outro", variant="primary")
                
                with gr.Row():
                    blues_btn = gr.Button("🎺 12-Bar Blues", variant="primary")
                    jazz_btn = gr.Button("🎻 Jazz Pattern", variant="primary")
                    ballad_btn = gr.Button("🎀 Ballad", variant="primary")
                    
                with gr.Row():
                    pattern_type = gr.Radio(label="Pattern Style", 
                                          choices=["simple", "arpeggio"], 
                                          value="simple")
                
                with gr.Row():
                    clear_btn = gr.Button("πŸ—‘οΈ Clear Sequence", variant="secondary")
                    play_btn = gr.Button("▢️ Play Current Sequence", variant="primary")
                
            with gr.TabItem("Custom MIDI Settings") as tab2:
                input_instruments = gr.Dropdown(label="πŸͺ— Instruments (auto if empty)", 
                                             choices=["Acoustic Grand", "Electric Piano", "Violin", "Guitar"],
                                             multiselect=True, type="value")
                input_bpm = gr.Slider(label="BPM (beats per minute)", minimum=60, maximum=180,
                                    step=1, value=120)
        
        # Output section
        output_midi_seq = gr.State()
        output_continuation_state = gr.State([0])
        
        midi_outputs = []
        audio_outputs = []
        
        with gr.Tabs(elem_id="output_tabs"):
            for i in range(OUTPUT_BATCH_SIZE):
                with gr.TabItem(f"Output {i + 1}") as tab:
                    output_midi_visualizer = gr.HTML(elem_id=f"midi_visualizer_container_{i}")
                    output_audio = gr.Audio(label="Output Audio", format="mp3", elem_id=f"midi_audio_{i}")
                    output_midi = gr.File(label="Output MIDI", file_types=[".mid"])
                    midi_outputs.append(output_midi)
                    audio_outputs.append(output_audio)
        
        # Connect chord buttons to functions
        for chord, btn in chord_buttons_major + chord_buttons_minor:
            btn.click(
                fn=lambda chord=chord, m=input_model, seq=output_midi_seq, pt=pattern_type: 
                   add_chord_sequence(m, seq, chord, "ballad", pt.value),
                inputs=[input_model, output_midi_seq, pattern_type],
                outputs=[output_midi_seq]
            )
        
        # Connect song structure buttons
        intro_btn.click(
            fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord: 
               add_chord_sequence(m, seq, rc.value, "pop-verse", "arpeggio"),
            inputs=[input_model, output_midi_seq, root_chord],
            outputs=[output_midi_seq]
        )
        
        verse_btn.click(
            fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord: 
               add_chord_sequence(m, seq, rc.value, "pop-verse", "simple"),
            inputs=[input_model, output_midi_seq, root_chord],
            outputs=[output_midi_seq]
        )
        
        chorus_btn.click(
            fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord: 
               add_chord_sequence(m, seq, rc.value, "pop-chorus", "simple"),
            inputs=[input_model, output_midi_seq, root_chord],
            outputs=[output_midi_seq]
        )
        
        bridge_btn.click(
            fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord: 
               add_chord_sequence(m, seq, rc.value, "jazz", "simple"),
            inputs=[input_model, output_midi_seq, root_chord],
            outputs=[output_midi_seq]
        )
        
        outro_btn.click(
            fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord: 
               add_chord_sequence(m, seq, rc.value, "ballad", "arpeggio"),
            inputs=[input_model, output_midi_seq, root_chord],
            outputs=[output_midi_seq]
        )
        
        blues_btn.click(
            fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord: 
               add_chord_sequence(m, seq, rc.value, "12-bar-blues", "simple"),
            inputs=[input_model, output_midi_seq, root_chord],
            outputs=[output_midi_seq]
        )
        
        jazz_btn.click(
            fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord: 
               add_chord_sequence(m, seq, rc.value, "jazz", "simple"),
            inputs=[input_model, output_midi_seq, root_chord],
            outputs=[output_midi_seq]
        )
        
        ballad_btn.click(
            fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord: 
               add_chord_sequence(m, seq, rc.value, "ballad", "simple"),
            inputs=[input_model, output_midi_seq, root_chord],
            outputs=[output_midi_seq]
        )
        
        # Clear and play buttons
        clear_btn.click(
            fn=lambda m=input_model: [[models[m].tokenizer.bos_id] + 
                                     [models[m].tokenizer.pad_id] * (models[m].tokenizer.max_token_seq - 1)] * OUTPUT_BATCH_SIZE,
            inputs=[input_model],
            outputs=[output_midi_seq]
        )
        
        # Play functionality - render audio and visualize
        def prepare_playback(model_name, mid_seq):
            if mid_seq is None:
                return mid_seq, [], send_msgs([])
            
            tokenizer = models[model_name].tokenizer
            msgs = []
            
            for i in range(OUTPUT_BATCH_SIZE):
                events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
                msgs += [
                    create_msg("visualizer_clear", [i, tokenizer.version]),
                    create_msg("visualizer_append", [i, events]),
                    create_msg("visualizer_end", i)
                ]
            
            return mid_seq, mid_seq, send_msgs(msgs)
        
        play_btn.click(
            fn=prepare_playback,
            inputs=[input_model, output_midi_seq],
            outputs=[output_midi_seq, output_continuation_state, js_msg]
        ).then(
            fn=render_audio,
            inputs=[input_model, output_midi_seq, gr.State(True)],
            outputs=audio_outputs
        )
        
    app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True, ssr_mode=False)
    thread_pool.shutdown()