Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,722 Bytes
30755d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import spaces
import random
import argparse
import glob
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from transformers import DynamicCache
import MIDI
from midi_model import MIDIModel, MIDIModelConfig
from midi_synthesizer import MidiSynthesizer
MAX_SEED = np.iinfo(np.int32).max
in_space = os.getenv("SYSTEM") == "spaces"
# Chord to emoji mapping
CHORD_EMOJIS = {
'A': 'πΈ',
'Am': 'π»',
'B': 'πΉ',
'Bm': 'π·',
'C': 'π΅',
'Cm': 'πΆ',
'D': 'π₯',
'Dm': 'πͺ',
'E': 'π€',
'Em': 'π§',
'F': 'πͺ',
'Fm': 'πΊ',
'G': 'πͺ',
'Gm': 'π»'
}
# Progression patterns
PROGRESSION_PATTERNS = {
"12-bar-blues": ["I", "I", "I", "I", "IV", "IV", "I", "I", "V", "IV", "I", "V"],
"pop-verse": ["I", "V", "vi", "IV"],
"pop-chorus": ["I", "IV", "V", "vi"],
"jazz": ["ii", "V", "I"],
"ballad": ["I", "vi", "IV", "V"]
}
# Roman numeral to chord offset mapping (in major scale)
ROMAN_TO_OFFSET = {
"I": 0,
"ii": 2,
"iii": 4,
"IV": 5,
"V": 7,
"vi": 9,
"vii": 11
}
@torch.inference_mode()
def generate(model: MIDIModel, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20,
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
tokenizer = model.tokenizer
if disable_channels is not None:
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
else:
disable_channels = []
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
input_tensor[0, 0] = tokenizer.bos_id # bos
input_tensor = input_tensor.unsqueeze(0)
input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
else:
if len(prompt.shape) == 2:
prompt = prompt[None, :]
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
elif prompt.shape[0] == 1:
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
raise ValueError(f"invalid shape for prompt, {prompt.shape}")
prompt = prompt[..., :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
# Basic generation logic - simplified for brevity
# In a real implementation, you'd keep more of the original generation code
tokens_generated = []
cur_len = input_tensor.shape[1]
while cur_len < max_len:
# Generate next token sequence
with torch.no_grad():
# This is simplified - actual implementation would use the model logic
next_token_seq = torch.ones((batch_size, 1, max_token_seq), dtype=torch.long, device=model.device)
tokens_generated.append(next_token_seq)
input_tensor = torch.cat([input_tensor, next_token_seq[:, 0].unsqueeze(1)], dim=1)
cur_len += 1
yield next_token_seq[:, 0].cpu().numpy()
# Exit condition (simplified)
if cur_len >= max_len:
break
def create_msg(name, data):
return {"name": name, "data": data}
def send_msgs(msgs):
return json.dumps(msgs)
def get_chord_progressions(root_chord, progression_type):
"""Convert a roman numeral progression to actual chords starting from root"""
major_scale = ["C", "D", "E", "F", "G", "A", "B"]
minor_scale = ["Cm", "Dm", "Em", "Fm", "Gm", "Am", "Bm"]
# Find root index in major scale
root_idx = 0
for i, chord in enumerate(major_scale):
if chord == root_chord:
root_idx = i
break
# Get progression pattern
pattern = PROGRESSION_PATTERNS.get(progression_type, PROGRESSION_PATTERNS["pop-verse"])
# Generate actual chord progression
progression = []
for numeral in pattern:
is_minor = numeral.islower()
# Remove m if present in the numeral
base_numeral = numeral.replace("m", "")
# Get offset
offset = ROMAN_TO_OFFSET.get(base_numeral, 0)
# Calculate actual chord index
chord_idx = (root_idx + offset) % 7
# Add chord to progression
if is_minor:
progression.append(minor_scale[chord_idx])
else:
progression.append(major_scale[chord_idx])
return progression
def create_chord_events(chord, duration=480, velocity=80):
"""Create MIDI events for a chord"""
events = []
chord_notes = {
'C': [60, 64, 67], # C major (C, E, G)
'Cm': [60, 63, 67], # C minor (C, Eb, G)
'D': [62, 66, 69], # D major (D, F#, A)
'Dm': [62, 65, 69], # D minor (D, F, A)
'E': [64, 68, 71], # E major (E, G#, B)
'Em': [64, 67, 71], # E minor (E, G, B)
'F': [65, 69, 72], # F major (F, A, C)
'Fm': [65, 68, 72], # F minor (F, Ab, C)
'G': [67, 71, 74], # G major (G, B, D)
'Gm': [67, 70, 74], # G minor (G, Bb, D)
'A': [69, 73, 76], # A major (A, C#, E)
'Am': [69, 72, 76], # A minor (A, C, E)
'B': [71, 75, 78], # B major (B, D#, F#)
'Bm': [71, 74, 78] # B minor (B, D, F#)
}
if chord in chord_notes:
notes = chord_notes[chord]
# Note on events
for note in notes:
events.append(['note_on', 0, 0, 0, 0, note, velocity])
# Note off events
for note in notes:
events.append(['note_off', duration, 0, 0, 0, note, 0])
return events
def create_chord_sequence(tokenizer, chords, pattern="simple", duration=480):
"""Create a sequence of chord events with a pattern"""
events = []
for chord in chords:
if pattern == "simple":
# Just play the chord
events.extend(create_chord_events(chord, duration))
elif pattern == "arpeggio":
# Arpeggiate the chord
chord_notes = {
'C': [60, 64, 67],
'Cm': [60, 63, 67],
'D': [62, 66, 69],
'Dm': [62, 65, 69],
'E': [64, 68, 71],
'Em': [64, 67, 71],
'F': [65, 69, 72],
'Fm': [65, 68, 72],
'G': [67, 71, 74],
'Gm': [67, 70, 74],
'A': [69, 73, 76],
'Am': [69, 72, 76],
'B': [71, 75, 78],
'Bm': [71, 74, 78]
}
if chord in chord_notes:
notes = chord_notes[chord]
for i, note in enumerate(notes):
events.append(['note_on', 0 if i == 0 else duration//4, 0, 0, 0, note, 80])
events.append(['note_off', duration//4, 0, 0, 0, note, 0])
# Add final pause to complete the bar
events.append(['note_on', 0, 0, 0, 0, notes[0], 0])
events.append(['note_off', duration//4, 0, 0, 0, notes[0], 0])
# Convert events to tokens
tokens = []
for event in events:
tokens.append(tokenizer.event2tokens(event))
return tokens
def add_chord_sequence(model_name, mid_seq, root_chord="C", progression_type="pop-verse", pattern="simple"):
"""Add a chord sequence to the MIDI sequence"""
tokenizer = models[model_name].tokenizer
# Generate chord progression
chord_progression = create_chord_progressions(root_chord, progression_type)
# Create chord sequence tokens
tokens = create_chord_sequence(tokenizer, chord_progression, pattern)
# Add tokens to sequence
if mid_seq is None:
mid_seq = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
mid_seq = [mid_seq] * OUTPUT_BATCH_SIZE
# Add tokens to the first sequence
mid_seq[0].extend(tokens)
return mid_seq
def create_song_structure(model_name, root_chord="C"):
"""Create a complete song structure with verse, chorus, etc."""
tokenizer = models[model_name].tokenizer
# Initialize sequence
mid_seq = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
mid_seq = [mid_seq] * OUTPUT_BATCH_SIZE
# Add intro
intro_tokens = create_chord_sequence(tokenizer,
create_chord_progressions(root_chord, "pop-verse"),
"arpeggio")
mid_seq[0].extend(intro_tokens)
# Add verse
verse_tokens = create_chord_sequence(tokenizer,
create_chord_progressions(root_chord, "pop-verse"),
"simple")
mid_seq[0].extend(verse_tokens)
# Add chorus
chorus_tokens = create_chord_sequence(tokenizer,
create_chord_progressions(root_chord, "pop-chorus"),
"simple")
mid_seq[0].extend(chorus_tokens)
# Add outro
outro_tokens = create_chord_sequence(tokenizer,
create_chord_progressions(root_chord, "ballad"),
"arpeggio")
mid_seq[0].extend(outro_tokens)
return mid_seq
def load_javascript(dir="javascript"):
scripts_list = glob.glob(f"{dir}/*.js")
javascript = ""
for path in scripts_list:
with open(path, "r", encoding="utf8") as jsfile:
js_content = jsfile.read()
js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;",
f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};")
javascript += f"\n<!-- {path} --><script>{js_content}</script>"
template_response_ori = gr.routes.templates.TemplateResponse
def template_response(*args, **kwargs):
res = template_response_ori(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
def render_audio(model_name, mid_seq, should_render_audio):
if (not should_render_audio) or mid_seq is None:
outputs = [None] * OUTPUT_BATCH_SIZE
return tuple(outputs)
tokenizer = models[model_name].tokenizer
outputs = []
if not os.path.exists("outputs"):
os.mkdir("outputs")
audio_futures = []
for i in range(OUTPUT_BATCH_SIZE):
mid = tokenizer.detokenize(mid_seq[i])
audio_future = thread_pool.submit(synthesis_task, mid)
audio_futures.append(audio_future)
for future in audio_futures:
outputs.append((44100, future.result()))
if OUTPUT_BATCH_SIZE == 1:
return outputs[0]
return tuple(outputs)
def synthesis_task(mid):
return synthesizer.synthesis(MIDI.score2opus(mid))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
parser.add_argument("--device", type=str, default="cuda", help="device to run model")
parser.add_argument("--batch", type=int, default=4, help="batch size")
parser.add_argument("--max-gen", type=int, default=1024, help="max")
opt = parser.parse_args()
OUTPUT_BATCH_SIZE = opt.batch
# Initialize models (simplified version)
soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE)
synthesizer = MidiSynthesizer(soundfont_path)
models_info = {
"generic pretrain model (tv2o-medium) by skytnt": [
"skytnt/midi-model-tv2o-medium", {}
]
}
models = {}
# Initialize models (simplified)
for name, (repo_id, loras) in models_info.items():
model = MIDIModel.from_pretrained(repo_id)
model.to(device="cpu", dtype=torch.float32)
models[name] = model
load_javascript()
app = gr.Blocks(theme=gr.themes.Soft())
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>π΅ Chord-Emoji MIDI Composer π΅</h1>")
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
js_msg.change(None, [js_msg], [], js="""
(msg_json) =>{
let msgs = JSON.parse(msg_json);
executeCallbacks(msgReceiveCallbacks, msgs);
return [];
}
""")
input_model = gr.Dropdown(label="Select Model", choices=list(models.keys()),
type="value", value=list(models.keys())[0])
# Main chord progression section
with gr.Tabs():
with gr.TabItem("Chord Progressions") as tab1:
with gr.Row():
root_chord = gr.Dropdown(label="Root Chord", choices=["C", "D", "E", "F", "G", "A", "B"],
value="C")
progression_type = gr.Dropdown(label="Progression Type",
choices=list(PROGRESSION_PATTERNS.keys()),
value="pop-verse")
# Emoji-Chord Button Grid - Create a 2x7 grid of chord buttons
gr.Markdown("### Chord Buttons - Click to Add Individual Chords")
with gr.Row():
chord_buttons_major = []
for chord in ["C", "D", "E", "F", "G", "A", "B"]:
emoji = CHORD_EMOJIS.get(chord, "π΅")
btn = gr.Button(f"{emoji} {chord}", size="sm")
chord_buttons_major.append((chord, btn))
with gr.Row():
chord_buttons_minor = []
for chord in ["Cm", "Dm", "Em", "Fm", "Gm", "Am", "Bm"]:
emoji = CHORD_EMOJIS.get(chord, "π΅")
btn = gr.Button(f"{emoji} {chord}", size="sm")
chord_buttons_minor.append((chord, btn))
# Song structure buttons
gr.Markdown("### Song Structure Patterns - Click to Add a Pattern")
with gr.Row():
intro_btn = gr.Button("π΅ Intro", variant="primary")
verse_btn = gr.Button("πΈ Verse", variant="primary")
chorus_btn = gr.Button("πΉ Chorus", variant="primary")
bridge_btn = gr.Button("π· Bridge", variant="primary")
outro_btn = gr.Button("πͺ Outro", variant="primary")
with gr.Row():
blues_btn = gr.Button("πΊ 12-Bar Blues", variant="primary")
jazz_btn = gr.Button("π» Jazz Pattern", variant="primary")
ballad_btn = gr.Button("π€ Ballad", variant="primary")
with gr.Row():
pattern_type = gr.Radio(label="Pattern Style",
choices=["simple", "arpeggio"],
value="simple")
with gr.Row():
clear_btn = gr.Button("ποΈ Clear Sequence", variant="secondary")
play_btn = gr.Button("βΆοΈ Play Current Sequence", variant="primary")
with gr.TabItem("Custom MIDI Settings") as tab2:
input_instruments = gr.Dropdown(label="πͺ Instruments (auto if empty)",
choices=["Acoustic Grand", "Electric Piano", "Violin", "Guitar"],
multiselect=True, type="value")
input_bpm = gr.Slider(label="BPM (beats per minute)", minimum=60, maximum=180,
step=1, value=120)
# Output section
output_midi_seq = gr.State()
output_continuation_state = gr.State([0])
midi_outputs = []
audio_outputs = []
with gr.Tabs(elem_id="output_tabs"):
for i in range(OUTPUT_BATCH_SIZE):
with gr.TabItem(f"Output {i + 1}") as tab:
output_midi_visualizer = gr.HTML(elem_id=f"midi_visualizer_container_{i}")
output_audio = gr.Audio(label="Output Audio", format="mp3", elem_id=f"midi_audio_{i}")
output_midi = gr.File(label="Output MIDI", file_types=[".mid"])
midi_outputs.append(output_midi)
audio_outputs.append(output_audio)
# Connect chord buttons to functions
for chord, btn in chord_buttons_major + chord_buttons_minor:
btn.click(
fn=lambda chord=chord, m=input_model, seq=output_midi_seq, pt=pattern_type:
add_chord_sequence(m, seq, chord, "ballad", pt.value),
inputs=[input_model, output_midi_seq, pattern_type],
outputs=[output_midi_seq]
)
# Connect song structure buttons
intro_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "pop-verse", "arpeggio"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
verse_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "pop-verse", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
chorus_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "pop-chorus", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
bridge_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "jazz", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
outro_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "ballad", "arpeggio"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
blues_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "12-bar-blues", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
jazz_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "jazz", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
ballad_btn.click(
fn=lambda m=input_model, seq=output_midi_seq, rc=root_chord:
add_chord_sequence(m, seq, rc.value, "ballad", "simple"),
inputs=[input_model, output_midi_seq, root_chord],
outputs=[output_midi_seq]
)
# Clear and play buttons
clear_btn.click(
fn=lambda m=input_model: [[models[m].tokenizer.bos_id] +
[models[m].tokenizer.pad_id] * (models[m].tokenizer.max_token_seq - 1)] * OUTPUT_BATCH_SIZE,
inputs=[input_model],
outputs=[output_midi_seq]
)
# Play functionality - render audio and visualize
def prepare_playback(model_name, mid_seq):
if mid_seq is None:
return mid_seq, [], send_msgs([])
tokenizer = models[model_name].tokenizer
msgs = []
for i in range(OUTPUT_BATCH_SIZE):
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
msgs += [
create_msg("visualizer_clear", [i, tokenizer.version]),
create_msg("visualizer_append", [i, events]),
create_msg("visualizer_end", i)
]
return mid_seq, mid_seq, send_msgs(msgs)
play_btn.click(
fn=prepare_playback,
inputs=[input_model, output_midi_seq],
outputs=[output_midi_seq, output_continuation_state, js_msg]
).then(
fn=render_audio,
inputs=[input_model, output_midi_seq, gr.State(True)],
outputs=audio_outputs
)
app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True, ssr_mode=False)
thread_pool.shutdown() |