awacke1's picture
Update app.py
b8ca8a3 verified
raw
history blame
13 kB
#!/usr/bin/env python3
import os
import base64
import streamlit as st
import csv
import time
from dataclasses import dataclass
st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
# Model Configurations
@dataclass
class ModelConfig:
name: str
base_model: str
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# Lazy-loaded Builders
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
def load_model(self, model_path: str, config: ModelConfig):
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.config = config
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def evaluate(self, prompt: str):
import torch
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: DiffusionConfig):
from diffusers import StableDiffusionPipeline
import torch
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
self.config = config
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
# Utilities
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
def generate_filename(text_line):
from datetime import datetime
import pytz
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%Y%m%d_%I%M%S_%p")
safe_text = ''.join(c if c.isalnum() else '_' for c in text_line[:50])
return f"{timestamp}_{safe_text}.png"
def get_gallery_files(file_types):
import glob
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
# Video Processor for WebRTC
class VideoSnapshot:
def __init__(self):
self.snapshot = None
def recv(self, frame):
from PIL import Image
img = frame.to_image()
self.snapshot = img
return frame
def take_snapshot(self):
return self.snapshot
# Main App
st.title("SFT Tiny Titans 🚀 (Fast & Fixed!)")
# Sidebar Galleries
st.sidebar.header("Media Gallery 🎨")
for gallery_type, file_types, emoji in [("Images 📸", ["png", "jpg", "jpeg"], "🖼️"), ("Videos 🎥", ["mp4"], "🎬")]:
st.sidebar.subheader(f"{gallery_type} {emoji}")
files = get_gallery_files(file_types)
if files:
cols = st.sidebar.columns(2)
for idx, file in enumerate(files[:4]):
with cols[idx % 2]:
if "Images" in gallery_type:
from PIL import Image
st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True)
elif "Videos" in gallery_type:
st.video(file)
# Sidebar Model Management
st.sidebar.subheader("Model Hub 🗂️")
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
model_options = {"NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M", "CV (Diffusion)": "CompVis/stable-diffusion-v1-4"}
selected_model = st.sidebar.selectbox("Select Model", ["None", model_options[model_type]])
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
with st.spinner("Loading... ⏳"):
builder.load_model(selected_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
# Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Fine-Tune Titans 🔧", "Test Titans 🧪", "Camera Snap 📷"])
with tab1:
st.header("Build Titan 🌱 (Quick Start!)")
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
base_model = st.selectbox("Select Model", [model_options[model_type]], key="build_model")
if st.button("Download Model ⬇️"):
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
with st.spinner("Fetching... ⏳"):
builder.load_model(base_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Titan up! 🎉")
with tab2:
st.header("Fine-Tune Titans 🔧 (Tune Fast!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Tune 🧠")
uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
if uploaded_csv and st.button("Tune NLP 🔄"):
from torch.utils.data import Dataset, DataLoader
import torch
class SFTDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
labels = inputs["input_ids"].clone()
labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
data = []
with open("temp.csv", "wb") as f:
f.write(uploaded_csv.read())
with open("temp.csv", "r") as f:
reader = csv.DictReader(f)
for row in reader:
data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(data, st.session_state['builder'].tokenizer)
dataloader = DataLoader(dataset, batch_size=2)
optimizer = torch.optim.AdamW(st.session_state['builder'].model.parameters(), lr=2e-5)
st.session_state['builder'].model.train()
for _ in range(1):
for batch in dataloader:
optimizer.zero_grad()
outputs = st.session_state['builder'].model(**{k: v.to(st.session_state['builder'].model.device) for k, v in batch.items()})
outputs.loss.backward()
optimizer.step()
st.success("NLP sharpened! 🎉")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Tune 🎨")
uploaded_files = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True, key="cv_upload")
text_input = st.text_area("Text (one per image)", "Bat Neon\nIron Glow", key="cv_text")
if uploaded_files and st.button("Tune CV 🔄"):
import torch
from PIL import Image
import numpy as np
images = [Image.open(f).convert("RGB") for f in uploaded_files]
texts = text_input.splitlines()[:len(images)]
optimizer = torch.optim.AdamW(st.session_state['builder'].pipeline.unet.parameters(), lr=1e-5)
st.session_state['builder'].pipeline.unet.train()
for _ in range(1):
for img, text in zip(images, texts):
optimizer.zero_grad()
latents = st.session_state['builder'].pipeline.vae.encode(torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(st.session_state['builder'].pipeline.device)).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, 1000, (1,), device=latents.device)
noisy_latents = st.session_state['builder'].pipeline.scheduler.add_noise(latents, noise, timesteps)
text_emb = st.session_state['builder'].pipeline.text_encoder(st.session_state['builder'].pipeline.tokenizer(text, return_tensors="pt").input_ids.to(st.session_state['builder'].pipeline.device))[0]
pred_noise = st.session_state['builder'].pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
for img, text in zip(images, texts):
filename = generate_filename(text)
img.save(filename)
st.success("CV polished! 🎉")
with tab3:
st.header("Test Titans 🧪 (Quick Check!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Test 🧠")
prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test")
if st.button("Test NLP ▶️"):
result = st.session_state['builder'].evaluate(prompt)
st.write(f"**Answer**: {result}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Test 🎨")
prompt = st.text_area("Prompt", "Neon Batman", key="cv_test")
if st.button("Test CV ▶️"):
with st.spinner("Generating... ⏳"):
img = st.session_state['builder'].generate(prompt)
st.image(img, caption="Generated Art")
with tab4:
st.header("Camera Snap 📷 (Instant Shots!)")
from streamlit_webrtc import webrtc_streamer
ctx = webrtc_streamer(
key="camera",
video_processor_factory=VideoSnapshot,
frontend_rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
)
if ctx.video_processor:
snapshot_text = st.text_input("Snapshot Text", "Live Snap")
if st.button("Snap It! 📸"):
snapshot = ctx.video_processor.take_snapshot()
if snapshot:
filename = generate_filename(snapshot_text)
snapshot.save(filename)
st.image(snapshot, caption=filename, use_container_width=True)
st.success("Snapped! 🎉")
# Demo Dataset
st.subheader("Demo CV Dataset 🎨")
demo_texts = ["Bat Neon", "Iron Glow"]
demo_images = [generate_filename(t) for t in demo_texts]
for img, text in zip(demo_images, demo_texts):
if not os.path.exists(img):
from PIL import Image
Image.new("RGB", (100, 100)).save(img)
st.code("\n".join([f"{i+1}. {t} -> {img}" for i, (t, img) in enumerate(zip(demo_texts, demo_images))]), language="text")
if st.button("Download Demo CSV 📝"):
csv_path = f"demo_cv_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["image", "text"])
for img, text in zip(demo_images, demo_texts):
writer.writerow([img, text])
st.markdown(get_download_link(csv_path, "text/csv", "Download Demo CSV"), unsafe_allow_html=True)