|
|
|
import os |
|
import base64 |
|
import streamlit as st |
|
import csv |
|
import time |
|
from dataclasses import dataclass |
|
|
|
st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded") |
|
|
|
|
|
@dataclass |
|
class ModelConfig: |
|
name: str |
|
base_model: str |
|
model_type: str = "causal_lm" |
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
@dataclass |
|
class DiffusionConfig: |
|
name: str |
|
base_model: str |
|
@property |
|
def model_path(self): |
|
return f"diffusion_models/{self.name}" |
|
|
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
def load_model(self, model_path: str, config: ModelConfig): |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
self.config = config |
|
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) |
|
def evaluate(self, prompt: str): |
|
import torch |
|
self.model.eval() |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=50) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
class DiffusionBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.pipeline = None |
|
def load_model(self, model_path: str, config: DiffusionConfig): |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path) |
|
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) |
|
self.config = config |
|
def generate(self, prompt: str): |
|
return self.pipeline(prompt, num_inference_steps=20).images[0] |
|
|
|
|
|
def get_download_link(file_path, mime_type="text/plain", label="Download"): |
|
with open(file_path, 'rb') as f: |
|
data = f.read() |
|
b64 = base64.b64encode(data).decode() |
|
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>' |
|
|
|
def generate_filename(text_line): |
|
from datetime import datetime |
|
import pytz |
|
central = pytz.timezone('US/Central') |
|
timestamp = datetime.now(central).strftime("%Y%m%d_%I%M%S_%p") |
|
safe_text = ''.join(c if c.isalnum() else '_' for c in text_line[:50]) |
|
return f"{timestamp}_{safe_text}.png" |
|
|
|
def get_gallery_files(file_types): |
|
import glob |
|
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) |
|
|
|
|
|
class VideoSnapshot: |
|
def __init__(self): |
|
self.snapshot = None |
|
def recv(self, frame): |
|
from PIL import Image |
|
img = frame.to_image() |
|
self.snapshot = img |
|
return frame |
|
def take_snapshot(self): |
|
return self.snapshot |
|
|
|
|
|
st.title("SFT Tiny Titans 🚀 (Fast & Fixed!)") |
|
|
|
|
|
st.sidebar.header("Media Gallery 🎨") |
|
for gallery_type, file_types, emoji in [("Images 📸", ["png", "jpg", "jpeg"], "🖼️"), ("Videos 🎥", ["mp4"], "🎬")]: |
|
st.sidebar.subheader(f"{gallery_type} {emoji}") |
|
files = get_gallery_files(file_types) |
|
if files: |
|
cols = st.sidebar.columns(2) |
|
for idx, file in enumerate(files[:4]): |
|
with cols[idx % 2]: |
|
if "Images" in gallery_type: |
|
from PIL import Image |
|
st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True) |
|
elif "Videos" in gallery_type: |
|
st.video(file) |
|
|
|
|
|
st.sidebar.subheader("Model Hub 🗂️") |
|
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"]) |
|
model_options = {"NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M", "CV (Diffusion)": "CompVis/stable-diffusion-v1-4"} |
|
selected_model = st.sidebar.selectbox("Select Model", ["None", model_options[model_type]]) |
|
if selected_model != "None" and st.sidebar.button("Load Model 📂"): |
|
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() |
|
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model) |
|
with st.spinner("Loading... ⏳"): |
|
builder.load_model(selected_model, config) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
|
|
|
|
tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Fine-Tune Titans 🔧", "Test Titans 🧪", "Camera Snap 📷"]) |
|
|
|
with tab1: |
|
st.header("Build Titan 🌱 (Quick Start!)") |
|
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type") |
|
base_model = st.selectbox("Select Model", [model_options[model_type]], key="build_model") |
|
if st.button("Download Model ⬇️"): |
|
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model) |
|
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() |
|
with st.spinner("Fetching... ⏳"): |
|
builder.load_model(base_model, config) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
st.success("Titan up! 🎉") |
|
|
|
with tab2: |
|
st.header("Fine-Tune Titans 🔧 (Tune Fast!)") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Load a Titan first! ⚠️") |
|
else: |
|
if isinstance(st.session_state['builder'], ModelBuilder): |
|
st.subheader("NLP Tune 🧠") |
|
uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv") |
|
if uploaded_csv and st.button("Tune NLP 🔄"): |
|
from torch.utils.data import Dataset, DataLoader |
|
import torch |
|
class SFTDataset(Dataset): |
|
def __init__(self, data, tokenizer): |
|
self.data = data |
|
self.tokenizer = tokenizer |
|
def __len__(self): |
|
return len(self.data) |
|
def __getitem__(self, idx): |
|
prompt = self.data[idx]["prompt"] |
|
response = self.data[idx]["response"] |
|
inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True) |
|
labels = inputs["input_ids"].clone() |
|
labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100 |
|
return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]} |
|
data = [] |
|
with open("temp.csv", "wb") as f: |
|
f.write(uploaded_csv.read()) |
|
with open("temp.csv", "r") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
data.append({"prompt": row["prompt"], "response": row["response"]}) |
|
dataset = SFTDataset(data, st.session_state['builder'].tokenizer) |
|
dataloader = DataLoader(dataset, batch_size=2) |
|
optimizer = torch.optim.AdamW(st.session_state['builder'].model.parameters(), lr=2e-5) |
|
st.session_state['builder'].model.train() |
|
for _ in range(1): |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
outputs = st.session_state['builder'].model(**{k: v.to(st.session_state['builder'].model.device) for k, v in batch.items()}) |
|
outputs.loss.backward() |
|
optimizer.step() |
|
st.success("NLP sharpened! 🎉") |
|
elif isinstance(st.session_state['builder'], DiffusionBuilder): |
|
st.subheader("CV Tune 🎨") |
|
uploaded_files = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True, key="cv_upload") |
|
text_input = st.text_area("Text (one per image)", "Bat Neon\nIron Glow", key="cv_text") |
|
if uploaded_files and st.button("Tune CV 🔄"): |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
images = [Image.open(f).convert("RGB") for f in uploaded_files] |
|
texts = text_input.splitlines()[:len(images)] |
|
optimizer = torch.optim.AdamW(st.session_state['builder'].pipeline.unet.parameters(), lr=1e-5) |
|
st.session_state['builder'].pipeline.unet.train() |
|
for _ in range(1): |
|
for img, text in zip(images, texts): |
|
optimizer.zero_grad() |
|
latents = st.session_state['builder'].pipeline.vae.encode(torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(st.session_state['builder'].pipeline.device)).latent_dist.sample() |
|
noise = torch.randn_like(latents) |
|
timesteps = torch.randint(0, 1000, (1,), device=latents.device) |
|
noisy_latents = st.session_state['builder'].pipeline.scheduler.add_noise(latents, noise, timesteps) |
|
text_emb = st.session_state['builder'].pipeline.text_encoder(st.session_state['builder'].pipeline.tokenizer(text, return_tensors="pt").input_ids.to(st.session_state['builder'].pipeline.device))[0] |
|
pred_noise = st.session_state['builder'].pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample |
|
loss = torch.nn.functional.mse_loss(pred_noise, noise) |
|
loss.backward() |
|
optimizer.step() |
|
for img, text in zip(images, texts): |
|
filename = generate_filename(text) |
|
img.save(filename) |
|
st.success("CV polished! 🎉") |
|
|
|
with tab3: |
|
st.header("Test Titans 🧪 (Quick Check!)") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Load a Titan first! ⚠️") |
|
else: |
|
if isinstance(st.session_state['builder'], ModelBuilder): |
|
st.subheader("NLP Test 🧠") |
|
prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test") |
|
if st.button("Test NLP ▶️"): |
|
result = st.session_state['builder'].evaluate(prompt) |
|
st.write(f"**Answer**: {result}") |
|
elif isinstance(st.session_state['builder'], DiffusionBuilder): |
|
st.subheader("CV Test 🎨") |
|
prompt = st.text_area("Prompt", "Neon Batman", key="cv_test") |
|
if st.button("Test CV ▶️"): |
|
with st.spinner("Generating... ⏳"): |
|
img = st.session_state['builder'].generate(prompt) |
|
st.image(img, caption="Generated Art") |
|
|
|
with tab4: |
|
st.header("Camera Snap 📷 (Instant Shots!)") |
|
from streamlit_webrtc import webrtc_streamer |
|
ctx = webrtc_streamer( |
|
key="camera", |
|
video_processor_factory=VideoSnapshot, |
|
frontend_rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]} |
|
) |
|
if ctx.video_processor: |
|
snapshot_text = st.text_input("Snapshot Text", "Live Snap") |
|
if st.button("Snap It! 📸"): |
|
snapshot = ctx.video_processor.take_snapshot() |
|
if snapshot: |
|
filename = generate_filename(snapshot_text) |
|
snapshot.save(filename) |
|
st.image(snapshot, caption=filename, use_container_width=True) |
|
st.success("Snapped! 🎉") |
|
|
|
|
|
st.subheader("Demo CV Dataset 🎨") |
|
demo_texts = ["Bat Neon", "Iron Glow"] |
|
demo_images = [generate_filename(t) for t in demo_texts] |
|
for img, text in zip(demo_images, demo_texts): |
|
if not os.path.exists(img): |
|
from PIL import Image |
|
Image.new("RGB", (100, 100)).save(img) |
|
st.code("\n".join([f"{i+1}. {t} -> {img}" for i, (t, img) in enumerate(zip(demo_texts, demo_images))]), language="text") |
|
if st.button("Download Demo CSV 📝"): |
|
csv_path = f"demo_cv_{int(time.time())}.csv" |
|
with open(csv_path, "w", newline="") as f: |
|
writer = csv.writer(f) |
|
writer.writerow(["image", "text"]) |
|
for img, text in zip(demo_images, demo_texts): |
|
writer.writerow([img, text]) |
|
st.markdown(get_download_link(csv_path, "text/csv", "Download Demo CSV"), unsafe_allow_html=True) |