File size: 12,987 Bytes
f331209 6265fea f331209 6265fea f331209 4cb9027 f331209 4cb9027 6265fea 4cb9027 6265fea 4cb9027 f331209 6265fea 4cb9027 6265fea f331209 4cb9027 6265fea 4cb9027 6265fea 4cb9027 f331209 6265fea f331209 8ff3549 f331209 4cb9027 8ff3549 4cb9027 f331209 b8ca8a3 8ff3549 4cb9027 8ff3549 4cb9027 8ff3549 f331209 b8ca8a3 f331209 4cb9027 8ff3549 6265fea f331209 8ff3549 6265fea 8ff3549 b8ca8a3 6265fea f331209 4cb9027 6265fea b8ca8a3 f331209 6265fea 4cb9027 6265fea f331209 8ff3549 f331209 8ff3549 6265fea b8ca8a3 f331209 4cb9027 6265fea 4cb9027 f331209 8ff3549 f331209 8ff3549 6265fea 4cb9027 b8ca8a3 4cb9027 8ff3549 6265fea 4cb9027 8ff3549 4cb9027 b8ca8a3 4cb9027 8ff3549 6265fea 4cb9027 8ff3549 6265fea 4cb9027 8ff3549 4cb9027 6265fea 4cb9027 6265fea 4cb9027 8ff3549 b8ca8a3 8ff3549 4cb9027 8ff3549 4cb9027 b8ca8a3 4cb9027 6265fea 4cb9027 8ff3549 4cb9027 6265fea 8ff3549 6265fea 4cb9027 6265fea 4cb9027 6265fea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
#!/usr/bin/env python3
import os
import base64
import streamlit as st
import csv
import time
from dataclasses import dataclass
st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
# Model Configurations
@dataclass
class ModelConfig:
name: str
base_model: str
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# Lazy-loaded Builders
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
def load_model(self, model_path: str, config: ModelConfig):
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.config = config
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def evaluate(self, prompt: str):
import torch
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: DiffusionConfig):
from diffusers import StableDiffusionPipeline
import torch
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
self.config = config
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
# Utilities
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
def generate_filename(text_line):
from datetime import datetime
import pytz
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%Y%m%d_%I%M%S_%p")
safe_text = ''.join(c if c.isalnum() else '_' for c in text_line[:50])
return f"{timestamp}_{safe_text}.png"
def get_gallery_files(file_types):
import glob
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
# Video Processor for WebRTC
class VideoSnapshot:
def __init__(self):
self.snapshot = None
def recv(self, frame):
from PIL import Image
img = frame.to_image()
self.snapshot = img
return frame
def take_snapshot(self):
return self.snapshot
# Main App
st.title("SFT Tiny Titans 🚀 (Fast & Fixed!)")
# Sidebar Galleries
st.sidebar.header("Media Gallery 🎨")
for gallery_type, file_types, emoji in [("Images 📸", ["png", "jpg", "jpeg"], "🖼️"), ("Videos 🎥", ["mp4"], "🎬")]:
st.sidebar.subheader(f"{gallery_type} {emoji}")
files = get_gallery_files(file_types)
if files:
cols = st.sidebar.columns(2)
for idx, file in enumerate(files[:4]):
with cols[idx % 2]:
if "Images" in gallery_type:
from PIL import Image
st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True)
elif "Videos" in gallery_type:
st.video(file)
# Sidebar Model Management
st.sidebar.subheader("Model Hub 🗂️")
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
model_options = {"NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M", "CV (Diffusion)": "CompVis/stable-diffusion-v1-4"}
selected_model = st.sidebar.selectbox("Select Model", ["None", model_options[model_type]])
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
with st.spinner("Loading... ⏳"):
builder.load_model(selected_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
# Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Fine-Tune Titans 🔧", "Test Titans 🧪", "Camera Snap 📷"])
with tab1:
st.header("Build Titan 🌱 (Quick Start!)")
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
base_model = st.selectbox("Select Model", [model_options[model_type]], key="build_model")
if st.button("Download Model ⬇️"):
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
with st.spinner("Fetching... ⏳"):
builder.load_model(base_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Titan up! 🎉")
with tab2:
st.header("Fine-Tune Titans 🔧 (Tune Fast!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Tune 🧠")
uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
if uploaded_csv and st.button("Tune NLP 🔄"):
from torch.utils.data import Dataset, DataLoader
import torch
class SFTDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
labels = inputs["input_ids"].clone()
labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
data = []
with open("temp.csv", "wb") as f:
f.write(uploaded_csv.read())
with open("temp.csv", "r") as f:
reader = csv.DictReader(f)
for row in reader:
data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(data, st.session_state['builder'].tokenizer)
dataloader = DataLoader(dataset, batch_size=2)
optimizer = torch.optim.AdamW(st.session_state['builder'].model.parameters(), lr=2e-5)
st.session_state['builder'].model.train()
for _ in range(1):
for batch in dataloader:
optimizer.zero_grad()
outputs = st.session_state['builder'].model(**{k: v.to(st.session_state['builder'].model.device) for k, v in batch.items()})
outputs.loss.backward()
optimizer.step()
st.success("NLP sharpened! 🎉")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Tune 🎨")
uploaded_files = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True, key="cv_upload")
text_input = st.text_area("Text (one per image)", "Bat Neon\nIron Glow", key="cv_text")
if uploaded_files and st.button("Tune CV 🔄"):
import torch
from PIL import Image
import numpy as np
images = [Image.open(f).convert("RGB") for f in uploaded_files]
texts = text_input.splitlines()[:len(images)]
optimizer = torch.optim.AdamW(st.session_state['builder'].pipeline.unet.parameters(), lr=1e-5)
st.session_state['builder'].pipeline.unet.train()
for _ in range(1):
for img, text in zip(images, texts):
optimizer.zero_grad()
latents = st.session_state['builder'].pipeline.vae.encode(torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(st.session_state['builder'].pipeline.device)).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, 1000, (1,), device=latents.device)
noisy_latents = st.session_state['builder'].pipeline.scheduler.add_noise(latents, noise, timesteps)
text_emb = st.session_state['builder'].pipeline.text_encoder(st.session_state['builder'].pipeline.tokenizer(text, return_tensors="pt").input_ids.to(st.session_state['builder'].pipeline.device))[0]
pred_noise = st.session_state['builder'].pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
for img, text in zip(images, texts):
filename = generate_filename(text)
img.save(filename)
st.success("CV polished! 🎉")
with tab3:
st.header("Test Titans 🧪 (Quick Check!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Test 🧠")
prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test")
if st.button("Test NLP ▶️"):
result = st.session_state['builder'].evaluate(prompt)
st.write(f"**Answer**: {result}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Test 🎨")
prompt = st.text_area("Prompt", "Neon Batman", key="cv_test")
if st.button("Test CV ▶️"):
with st.spinner("Generating... ⏳"):
img = st.session_state['builder'].generate(prompt)
st.image(img, caption="Generated Art")
with tab4:
st.header("Camera Snap 📷 (Instant Shots!)")
from streamlit_webrtc import webrtc_streamer
ctx = webrtc_streamer(
key="camera",
video_processor_factory=VideoSnapshot,
frontend_rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
)
if ctx.video_processor:
snapshot_text = st.text_input("Snapshot Text", "Live Snap")
if st.button("Snap It! 📸"):
snapshot = ctx.video_processor.take_snapshot()
if snapshot:
filename = generate_filename(snapshot_text)
snapshot.save(filename)
st.image(snapshot, caption=filename, use_container_width=True)
st.success("Snapped! 🎉")
# Demo Dataset
st.subheader("Demo CV Dataset 🎨")
demo_texts = ["Bat Neon", "Iron Glow"]
demo_images = [generate_filename(t) for t in demo_texts]
for img, text in zip(demo_images, demo_texts):
if not os.path.exists(img):
from PIL import Image
Image.new("RGB", (100, 100)).save(img)
st.code("\n".join([f"{i+1}. {t} -> {img}" for i, (t, img) in enumerate(zip(demo_texts, demo_images))]), language="text")
if st.button("Download Demo CSV 📝"):
csv_path = f"demo_cv_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["image", "text"])
for img, text in zip(demo_images, demo_texts):
writer.writerow([img, text])
st.markdown(get_download_link(csv_path, "text/csv", "Download Demo CSV"), unsafe_allow_html=True) |