awacke1 commited on
Commit
de4c9aa
·
verified ·
1 Parent(s): dc4947d

Delete backup-addedchat-app.py

Browse files
Files changed (1) hide show
  1. backup-addedchat-app.py +0 -196
backup-addedchat-app.py DELETED
@@ -1,196 +0,0 @@
1
- import streamlit as st
2
- import openai
3
- from openai import OpenAI
4
- import os, base64, cv2, glob
5
- from moviepy.editor import VideoFileClip
6
- from datetime import datetime
7
- import pytz
8
- from audio_recorder_streamlit import audio_recorder
9
-
10
- openai.api_key, openai.organization = os.getenv('OPENAI_API_KEY'), os.getenv('OPENAI_ORG_ID')
11
- client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
12
-
13
- MODEL = "gpt-4o-2024-05-13"
14
-
15
- if 'messages' not in st.session_state:
16
- st.session_state.messages = []
17
-
18
- def generate_filename(prompt, file_type):
19
- central = pytz.timezone('US/Central')
20
- safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
21
- safe_prompt = "".join(x for x in prompt.replace(" ", "_").replace("\n", "_") if x.isalnum() or x == "_")[:90]
22
- return f"{safe_date_time}_{safe_prompt}.{file_type}"
23
-
24
- def create_file(filename, prompt, response, should_save=True):
25
- if should_save and os.path.splitext(filename)[1] in ['.txt', '.htm', '.md']:
26
- with open(os.path.splitext(filename)[0] + ".md", 'w', encoding='utf-8') as file:
27
- file.write(response)
28
-
29
- def process_text(text_input):
30
- if text_input:
31
- st.session_state.messages.append({"role": "user", "content": text_input})
32
- with st.chat_message("user"):
33
- st.markdown(text_input)
34
- completion = client.chat.completions.create(model=MODEL, messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False)
35
- return_text = completion.choices[0].message.content
36
- with st.chat_message("assistant"):
37
- st.markdown(return_text)
38
- filename = generate_filename(text_input, "md")
39
- create_file(filename, text_input, return_text)
40
- st.session_state.messages.append({"role": "assistant", "content": return_text})
41
-
42
- def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'):
43
- if text_input:
44
- st.session_state.messages.append({"role": "user", "content": text_input})
45
- completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages)
46
- return_text = completion.choices[0].message.content
47
- st.write("Assistant: " + return_text)
48
- filename = generate_filename(text_input, "md")
49
- create_file(filename, text_input, return_text, should_save=True)
50
- return return_text
51
-
52
- def save_image(image_input, filename):
53
- with open(filename, "wb") as f:
54
- f.write(image_input.getvalue())
55
- return filename
56
-
57
- def process_image(image_input):
58
- if image_input:
59
- with st.chat_message("user"):
60
- st.markdown('Processing image: ' + image_input.name)
61
- base64_image = base64.b64encode(image_input.read()).decode("utf-8")
62
- st.session_state.messages.append({"role": "user", "content": [{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]})
63
- response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0.0)
64
- image_response = response.choices[0].message.content
65
- with st.chat_message("assistant"):
66
- st.markdown(image_response)
67
- filename_md, filename_img = generate_filename(image_input.name + '- ' + image_response, "md"), image_input.name
68
- create_file(filename_md, image_response, '', True)
69
- with open(filename_md, "w", encoding="utf-8") as f:
70
- f.write(image_response)
71
- save_image(image_input, filename_img)
72
- st.session_state.messages.append({"role": "assistant", "content": image_response})
73
- return image_response
74
-
75
- def process_audio(audio_input):
76
- if audio_input:
77
- st.session_state.messages.append({"role": "user", "content": audio_input})
78
- transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input)
79
- response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0)
80
- audio_response = response.choices[0].message.content
81
- with st.chat_message("assistant"):
82
- st.markdown(audio_response)
83
- filename = generate_filename(transcription.text, "md")
84
- create_file(filename, transcription.text, audio_response, should_save=True)
85
- st.session_state.messages.append({"role": "assistant", "content": audio_response})
86
-
87
- def process_audio_and_video(video_input):
88
- if video_input is not None:
89
- video_path = save_video(video_input)
90
- base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
91
- transcript = process_audio_for_video(video_input)
92
- st.session_state.messages.append({"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcript}"}]})
93
- response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0)
94
- video_response = response.choices[0].message.content
95
- with st.chat_message("assistant"):
96
- st.markdown(video_response)
97
- filename = generate_filename(transcript, "md")
98
- create_file(filename, transcript, video_response, should_save=True)
99
- st.session_state.messages.append({"role": "assistant", "content": video_response})
100
-
101
- def process_audio_for_video(video_input):
102
- if video_input:
103
- st.session_state.messages.append({"role": "user", "content": video_input})
104
- transcription = client.audio.transcriptions.create(model="whisper-1", file=video_input)
105
- response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}]}], temperature=0)
106
- video_response = response.choices[0].message.content
107
- with st.chat_message("assistant"):
108
- st.markdown(video_response)
109
- filename = generate_filename(transcription, "md")
110
- create_file(filename, transcription, video_response, should_save=True)
111
- st.session_state.messages.append({"role": "assistant", "content": video_response})
112
- return video_response
113
-
114
- def save_video(video_file):
115
- with open(video_file.name, "wb") as f:
116
- f.write(video_file.getbuffer())
117
- return video_file.name
118
-
119
- def process_video(video_path, seconds_per_frame=2):
120
- base64Frames, base_video_path = [], os.path.splitext(video_path)[0]
121
- video, total_frames, fps = cv2.VideoCapture(video_path), int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)), cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FPS)
122
- curr_frame, frames_to_skip = 0, int(fps * seconds_per_frame)
123
- while curr_frame < total_frames - 1:
124
- video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
125
- success, frame = video.read()
126
- if not success: break
127
- _, buffer = cv2.imencode(".jpg", frame)
128
- base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
129
- curr_frame += frames_to_skip
130
- video.release()
131
- audio_path = f"{base_video_path}.mp3"
132
- clip = VideoFileClip(video_path)
133
- clip.audio.write_audiofile(audio_path, bitrate="32k")
134
- clip.audio.close()
135
- clip.close()
136
- print(f"Extracted {len(base64Frames)} frames")
137
- print(f"Extracted audio to {audio_path}")
138
- return base64Frames, audio_path
139
-
140
- def save_and_play_audio(audio_recorder):
141
- audio_bytes = audio_recorder(key='audio_recorder')
142
- if audio_bytes:
143
- filename = generate_filename("Recording", "wav")
144
- with open(filename, 'wb') as f:
145
- f.write(audio_bytes)
146
- st.audio(audio_bytes, format="audio/wav")
147
- return filename
148
- return None
149
-
150
- def main():
151
- st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
152
- option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
153
- if option == "Text":
154
- text_input = st.chat_input("Enter your text:")
155
- if text_input:
156
- process_text(text_input)
157
- elif option == "Image":
158
- image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
159
- process_image(image_input)
160
- elif option == "Audio":
161
- audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
162
- process_audio(audio_input)
163
- elif option == "Video":
164
- video_input = st.file_uploader("Upload a video file", type=["mp4"])
165
- process_audio_and_video(video_input)
166
-
167
- all_files = sorted(glob.glob("*.md"), key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
168
- all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
169
- st.sidebar.title("File Gallery")
170
- for file in all_files:
171
- with st.sidebar.expander(file), open(file, "r", encoding="utf-8") as f:
172
- st.code(f.read(), language="markdown")
173
-
174
- if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
175
- st.session_state.messages.append({"role": "user", "content": prompt})
176
- with st.chat_message("user"):
177
- st.markdown(prompt)
178
- with st.chat_message("assistant"):
179
- completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
180
- response = process_text2(text_input=prompt)
181
- st.session_state.messages.append({"role": "assistant", "content": response})
182
-
183
- filename = save_and_play_audio(audio_recorder)
184
- if filename is not None:
185
- transcript = transcribe_canary(filename)
186
- result = search_arxiv(transcript)
187
- st.session_state.messages.append({"role": "user", "content": transcript})
188
- with st.chat_message("user"):
189
- st.markdown(transcript)
190
- with st.chat_message("assistant"):
191
- completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
192
- response = process_text2(text_input=prompt)
193
- st.session_state.messages.append({"role": "assistant", "content": response})
194
-
195
- if __name__ == "__main__":
196
- main()