awacke1 commited on
Commit
dc4947d
·
verified ·
1 Parent(s): c3a824a

Delete backup-app3-0521-app.py

Browse files
Files changed (1) hide show
  1. backup-app3-0521-app.py +0 -172
backup-app3-0521-app.py DELETED
@@ -1,172 +0,0 @@
1
- import streamlit as st
2
- import openai
3
- from openai import OpenAI
4
- import os
5
- import base64
6
- import cv2
7
- from moviepy.editor import VideoFileClip
8
-
9
- # documentation
10
- # 1. Cookbook: https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
11
- # 2. Configure your Project and Orgs to limit/allow Models: https://platform.openai.com/settings/organization/general
12
- # 3. Watch your Billing! https://platform.openai.com/settings/organization/billing/overview
13
-
14
-
15
- # Set API key and organization ID from environment variables
16
- openai.api_key = os.getenv('OPENAI_API_KEY')
17
- openai.organization = os.getenv('OPENAI_ORG_ID')
18
- client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
19
-
20
- # Define the model to be used
21
- #MODEL = "gpt-4o"
22
- MODEL = "gpt-4o-2024-05-13"
23
-
24
- def process_text():
25
- text_input = st.text_input("Enter your text:")
26
- if text_input:
27
- completion = client.chat.completions.create(
28
- model=MODEL,
29
- messages=[
30
- {"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"},
31
- {"role": "user", "content": f"Hello! Could you solve {text_input}?"}
32
- ]
33
- )
34
- st.write("Assistant: " + completion.choices[0].message.content)
35
-
36
- def process_image(image_input):
37
- if image_input:
38
- base64_image = base64.b64encode(image_input.read()).decode("utf-8")
39
- response = client.chat.completions.create(
40
- model=MODEL,
41
- messages=[
42
- {"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
43
- {"role": "user", "content": [
44
- {"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."},
45
- {"type": "image_url", "image_url": {
46
- "url": f"data:image/png;base64,{base64_image}"}
47
- }
48
- ]}
49
- ],
50
- temperature=0.0,
51
- )
52
- st.markdown(response.choices[0].message.content)
53
-
54
- def process_audio(audio_input):
55
- if audio_input:
56
- transcription = client.audio.transcriptions.create(
57
- model="whisper-1",
58
- file=audio_input,
59
- )
60
- response = client.chat.completions.create(
61
- model=MODEL,
62
- messages=[
63
- {"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
64
- {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}],}
65
- ],
66
- temperature=0,
67
- )
68
- st.markdown(response.choices[0].message.content)
69
-
70
- def process_audio_for_video(video_input):
71
- if video_input:
72
- transcription = client.audio.transcriptions.create(
73
- model="whisper-1",
74
- file=video_input,
75
- )
76
- response = client.chat.completions.create(
77
- model=MODEL,
78
- messages=[
79
- {"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
80
- {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],}
81
- ],
82
- temperature=0,
83
- )
84
- st.markdown(response.choices[0].message.content)
85
- return response.choices[0].message.content
86
-
87
- def save_video(video_file):
88
- # Save the uploaded video file
89
- with open(video_file.name, "wb") as f:
90
- f.write(video_file.getbuffer())
91
- return video_file.name
92
-
93
- def process_video(video_path, seconds_per_frame=2):
94
- base64Frames = []
95
- base_video_path, _ = os.path.splitext(video_path)
96
- video = cv2.VideoCapture(video_path)
97
- total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
98
- fps = video.get(cv2.CAP_PROP_FPS)
99
- frames_to_skip = int(fps * seconds_per_frame)
100
- curr_frame = 0
101
-
102
- # Loop through the video and extract frames at specified sampling rate
103
- while curr_frame < total_frames - 1:
104
- video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
105
- success, frame = video.read()
106
- if not success:
107
- break
108
- _, buffer = cv2.imencode(".jpg", frame)
109
- base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
110
- curr_frame += frames_to_skip
111
-
112
- video.release()
113
-
114
- # Extract audio from video
115
- audio_path = f"{base_video_path}.mp3"
116
- clip = VideoFileClip(video_path)
117
- clip.audio.write_audiofile(audio_path, bitrate="32k")
118
- clip.audio.close()
119
- clip.close()
120
-
121
- print(f"Extracted {len(base64Frames)} frames")
122
- print(f"Extracted audio to {audio_path}")
123
-
124
- return base64Frames, audio_path
125
-
126
- def process_audio_and_video(video_input):
127
- if video_input is not None:
128
- # Save the uploaded video file
129
- video_path = save_video(video_input )
130
-
131
- # Process the saved video
132
- base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
133
-
134
- # Get the transcript for the video model call
135
- transcript = process_audio_for_video(video_input)
136
-
137
- # Generate a summary with visual and audio
138
- response = client.chat.completions.create(
139
- model=MODEL,
140
- messages=[
141
- {"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""},
142
- {"role": "user", "content": [
143
- "These are the frames from the video.",
144
- *map(lambda x: {"type": "image_url",
145
- "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
146
- {"type": "text", "text": f"The audio transcription is: {transcript}"}
147
- ]},
148
- ],
149
- temperature=0,
150
- )
151
-
152
- st.markdown(response.choices[0].message.content)
153
-
154
-
155
- def main():
156
- st.markdown("### OpenAI GPT-4o Model")
157
- st.markdown("#### The Omni Model with Text, Audio, Image, and Video")
158
- option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
159
- if option == "Text":
160
- process_text()
161
- elif option == "Image":
162
- image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
163
- process_image(image_input)
164
- elif option == "Audio":
165
- audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
166
- process_audio(audio_input)
167
- elif option == "Video":
168
- video_input = st.file_uploader("Upload a video file", type=["mp4"])
169
- process_audio_and_video(video_input)
170
-
171
- if __name__ == "__main__":
172
- main()