Update app.py
Browse files
app.py
CHANGED
@@ -136,55 +136,68 @@ class VideoSearch:
|
|
136 |
st.warning("Using example data embeddings")
|
137 |
self.dataset = self.load_example_data()
|
138 |
|
139 |
-
# Debug
|
140 |
-
st.write("
|
141 |
-
st.write("
|
|
|
|
|
|
|
|
|
142 |
|
143 |
# Convert string representations of embeddings back to numpy arrays
|
144 |
-
def
|
145 |
try:
|
146 |
-
#
|
147 |
-
|
148 |
-
|
149 |
-
# Split by
|
150 |
-
|
151 |
-
return
|
152 |
-
|
|
|
|
|
|
|
|
|
153 |
except Exception as e:
|
154 |
-
st.error(f"Error parsing embedding: {e}")
|
155 |
-
|
|
|
156 |
|
157 |
-
# Process embeddings
|
158 |
video_embeds = []
|
159 |
text_embeds = []
|
160 |
|
161 |
for idx in range(len(self.dataset)):
|
162 |
try:
|
163 |
-
video_embed =
|
164 |
-
desc_embed =
|
165 |
|
166 |
-
if video_embed and desc_embed:
|
167 |
video_embeds.append(video_embed)
|
168 |
text_embeds.append(desc_embed)
|
|
|
|
|
169 |
except Exception as e:
|
170 |
-
st.error(f"Error processing row {idx}: {e}")
|
|
|
171 |
|
172 |
if video_embeds and text_embeds:
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
176 |
else:
|
177 |
-
st.warning("
|
178 |
num_rows = len(self.dataset)
|
179 |
self.video_embeds = np.random.randn(num_rows, 384)
|
180 |
self.text_embeds = np.random.randn(num_rows, 384)
|
181 |
|
182 |
-
# Debug output
|
183 |
-
st.write("Video embeddings shape:", self.video_embeds.shape)
|
184 |
-
st.write("Text embeddings shape:", self.text_embeds.shape)
|
185 |
-
|
186 |
except Exception as e:
|
187 |
-
st.error(f"Error preparing features: {e}")
|
188 |
import traceback
|
189 |
st.write("Traceback:", traceback.format_exc())
|
190 |
# Create random embeddings as fallback
|
|
|
136 |
st.warning("Using example data embeddings")
|
137 |
self.dataset = self.load_example_data()
|
138 |
|
139 |
+
# Debug: Show raw data types and first row
|
140 |
+
st.write("Data Types:", self.dataset.dtypes)
|
141 |
+
st.write("\nFirst row of embeddings:")
|
142 |
+
st.write("video_embed type:", type(self.dataset['video_embed'].iloc[0]))
|
143 |
+
st.write("video_embed content:", self.dataset['video_embed'].iloc[0])
|
144 |
+
st.write("\ndescription_embed type:", type(self.dataset['description_embed'].iloc[0]))
|
145 |
+
st.write("description_embed content:", self.dataset['description_embed'].iloc[0])
|
146 |
|
147 |
# Convert string representations of embeddings back to numpy arrays
|
148 |
+
def safe_eval_list(s):
|
149 |
try:
|
150 |
+
# Clean the string representation
|
151 |
+
if isinstance(s, str):
|
152 |
+
s = s.replace('[', '').replace(']', '').strip()
|
153 |
+
# Split by whitespace and/or commas
|
154 |
+
numbers = [float(x.strip()) for x in s.split() if x.strip()]
|
155 |
+
return numbers
|
156 |
+
elif isinstance(s, list):
|
157 |
+
return [float(x) for x in s]
|
158 |
+
else:
|
159 |
+
st.error(f"Unexpected type for embedding: {type(s)}")
|
160 |
+
return None
|
161 |
except Exception as e:
|
162 |
+
st.error(f"Error parsing embedding: {str(e)}")
|
163 |
+
st.write("Problematic string:", s)
|
164 |
+
return None
|
165 |
|
166 |
+
# Process embeddings with detailed error reporting
|
167 |
video_embeds = []
|
168 |
text_embeds = []
|
169 |
|
170 |
for idx in range(len(self.dataset)):
|
171 |
try:
|
172 |
+
video_embed = safe_eval_list(self.dataset['video_embed'].iloc[idx])
|
173 |
+
desc_embed = safe_eval_list(self.dataset['description_embed'].iloc[idx])
|
174 |
|
175 |
+
if video_embed is not None and desc_embed is not None:
|
176 |
video_embeds.append(video_embed)
|
177 |
text_embeds.append(desc_embed)
|
178 |
+
else:
|
179 |
+
st.warning(f"Skipping row {idx} due to parsing failure")
|
180 |
except Exception as e:
|
181 |
+
st.error(f"Error processing row {idx}: {str(e)}")
|
182 |
+
st.write("Row data:", self.dataset.iloc[idx])
|
183 |
|
184 |
if video_embeds and text_embeds:
|
185 |
+
try:
|
186 |
+
self.video_embeds = np.array(video_embeds)
|
187 |
+
self.text_embeds = np.array(text_embeds)
|
188 |
+
st.success(f"Successfully processed {len(video_embeds)} embeddings")
|
189 |
+
st.write("Video embeddings shape:", self.video_embeds.shape)
|
190 |
+
st.write("Text embeddings shape:", self.text_embeds.shape)
|
191 |
+
except Exception as e:
|
192 |
+
st.error(f"Error converting to numpy arrays: {str(e)}")
|
193 |
else:
|
194 |
+
st.warning("No valid embeddings found, using random embeddings")
|
195 |
num_rows = len(self.dataset)
|
196 |
self.video_embeds = np.random.randn(num_rows, 384)
|
197 |
self.text_embeds = np.random.randn(num_rows, 384)
|
198 |
|
|
|
|
|
|
|
|
|
199 |
except Exception as e:
|
200 |
+
st.error(f"Error preparing features: {str(e)}")
|
201 |
import traceback
|
202 |
st.write("Traceback:", traceback.format_exc())
|
203 |
# Create random embeddings as fallback
|