Update app.py
Browse files
app.py
CHANGED
@@ -136,19 +136,57 @@ class VideoSearch:
|
|
136 |
st.warning("Using example data embeddings")
|
137 |
self.dataset = self.load_example_data()
|
138 |
|
|
|
|
|
|
|
|
|
139 |
# Convert string representations of embeddings back to numpy arrays
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
num_rows = len(self.dataset)
|
148 |
self.video_embeds = np.random.randn(num_rows, 384)
|
149 |
self.text_embeds = np.random.randn(num_rows, 384)
|
|
|
|
|
|
|
|
|
|
|
150 |
except Exception as e:
|
151 |
st.error(f"Error preparing features: {e}")
|
|
|
|
|
152 |
# Create random embeddings as fallback
|
153 |
num_rows = len(self.dataset)
|
154 |
self.video_embeds = np.random.randn(num_rows, 384)
|
|
|
136 |
st.warning("Using example data embeddings")
|
137 |
self.dataset = self.load_example_data()
|
138 |
|
139 |
+
# Debug the embedding data
|
140 |
+
st.write("Sample video_embed:", self.dataset['video_embed'].iloc[0])
|
141 |
+
st.write("Sample description_embed:", self.dataset['description_embed'].iloc[0])
|
142 |
+
|
143 |
# Convert string representations of embeddings back to numpy arrays
|
144 |
+
def parse_embedding(embed_str):
|
145 |
+
try:
|
146 |
+
# Remove any string formatting artifacts
|
147 |
+
cleaned_str = str(embed_str).strip()
|
148 |
+
if cleaned_str.startswith('[') and cleaned_str.endswith(']'):
|
149 |
+
# Split by comma and convert to floats
|
150 |
+
values = [float(x.strip()) for x in cleaned_str[1:-1].split(',')]
|
151 |
+
return values
|
152 |
+
return []
|
153 |
+
except Exception as e:
|
154 |
+
st.error(f"Error parsing embedding: {e}")
|
155 |
+
return []
|
156 |
+
|
157 |
+
# Process embeddings
|
158 |
+
video_embeds = []
|
159 |
+
text_embeds = []
|
160 |
+
|
161 |
+
for idx in range(len(self.dataset)):
|
162 |
+
try:
|
163 |
+
video_embed = parse_embedding(self.dataset['video_embed'].iloc[idx])
|
164 |
+
desc_embed = parse_embedding(self.dataset['description_embed'].iloc[idx])
|
165 |
+
|
166 |
+
if video_embed and desc_embed:
|
167 |
+
video_embeds.append(video_embed)
|
168 |
+
text_embeds.append(desc_embed)
|
169 |
+
except Exception as e:
|
170 |
+
st.error(f"Error processing row {idx}: {e}")
|
171 |
+
|
172 |
+
if video_embeds and text_embeds:
|
173 |
+
self.video_embeds = np.array(video_embeds)
|
174 |
+
self.text_embeds = np.array(text_embeds)
|
175 |
+
st.success(f"Successfully processed {len(video_embeds)} embeddings")
|
176 |
+
else:
|
177 |
+
st.warning("Falling back to random embeddings")
|
178 |
num_rows = len(self.dataset)
|
179 |
self.video_embeds = np.random.randn(num_rows, 384)
|
180 |
self.text_embeds = np.random.randn(num_rows, 384)
|
181 |
+
|
182 |
+
# Debug output
|
183 |
+
st.write("Video embeddings shape:", self.video_embeds.shape)
|
184 |
+
st.write("Text embeddings shape:", self.text_embeds.shape)
|
185 |
+
|
186 |
except Exception as e:
|
187 |
st.error(f"Error preparing features: {e}")
|
188 |
+
import traceback
|
189 |
+
st.write("Traceback:", traceback.format_exc())
|
190 |
# Create random embeddings as fallback
|
191 |
num_rows = len(self.dataset)
|
192 |
self.video_embeds = np.random.randn(num_rows, 384)
|