Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import torch | |
import json | |
import os | |
from pathlib import Path | |
from datetime import datetime | |
import edge_tts | |
import asyncio | |
import base64 | |
import streamlit.components.v1 as components | |
# Page configuration | |
st.set_page_config( | |
page_title="Video Search with Speech", | |
page_icon="π₯", | |
layout="wide" | |
) | |
# Initialize session state | |
if 'search_history' not in st.session_state: | |
st.session_state['search_history'] = [] | |
if 'last_voice_input' not in st.session_state: | |
st.session_state['last_voice_input'] = "" | |
# Initialize the speech component | |
speech_component = components.declare_component("speech_recognition", path="mycomponent") | |
class VideoSearch: | |
def __init__(self): | |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2') | |
self.load_dataset() | |
def fetch_dataset_rows(self): | |
"""Fetch dataset from Hugging Face API""" | |
import requests | |
# Fetch first rows from the dataset | |
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
# Extract the rows from the response | |
rows = data.get('rows', []) | |
return pd.DataFrame(rows) | |
else: | |
st.error(f"Error fetching dataset: {response.status_code}") | |
return None | |
def get_dataset_splits(self): | |
"""Get available dataset splits""" | |
import requests | |
url = "https://datasets-server.huggingface.co/splits?dataset=omegalabsinc%2Fomega-multimodal" | |
response = requests.get(url) | |
if response.status_code == 200: | |
splits_data = response.json() | |
return splits_data | |
else: | |
st.error(f"Error fetching splits: {response.status_code}") | |
return None | |
def load_dataset(self): | |
"""Load the Omega Multimodal dataset""" | |
try: | |
# Fetch dataset from Hugging Face API | |
self.dataset = self.fetch_dataset_rows() | |
if self.dataset is not None: | |
# Get dataset splits info | |
splits_info = self.get_dataset_splits() | |
if splits_info: | |
st.sidebar.write("Available splits:", splits_info) | |
self.prepare_features() | |
else: | |
self.create_dummy_data() | |
except Exception as e: | |
st.error(f"Error loading dataset: {e}") | |
self.create_dummy_data() | |
def prepare_features(self): | |
"""Prepare and cache embeddings""" | |
# Convert string representations of embeddings back to numpy arrays | |
try: | |
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e | |
for e in self.dataset.video_embed]) | |
self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e | |
for e in self.dataset.description_embed]) | |
except Exception as e: | |
st.error(f"Error preparing features: {e}") | |
# Create random embeddings as fallback | |
num_rows = len(self.dataset) | |
self.video_embeds = np.random.randn(num_rows, 384) | |
self.text_embeds = np.random.randn(num_rows, 384) | |
def create_dummy_data(self): | |
"""Create dummy data for testing""" | |
self.dataset = pd.DataFrame({ | |
'video_id': [f'video_{i}' for i in range(10)], | |
'youtube_id': ['dQw4w9WgXcQ'] * 10, | |
'description': ['Sample video description'] * 10, | |
'views': [1000] * 10, | |
'start_time': [0] * 10, | |
'end_time': [60] * 10 | |
}) | |
# Create dummy embeddings | |
self.video_embeds = np.random.randn(10, 384) # Match model dimensions | |
self.text_embeds = np.random.randn(10, 384) | |
def search(self, query, top_k=5): | |
"""Search videos using query""" | |
query_embedding = self.text_model.encode([query])[0] | |
# Compute similarities | |
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0] | |
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0] | |
# Combine similarities | |
combined_sims = 0.5 * video_sims + 0.5 * text_sims | |
# Get top results | |
top_indices = np.argsort(combined_sims)[-top_k:][::-1] | |
results = [] | |
for idx in top_indices: | |
results.append({ | |
'video_id': self.dataset.iloc[idx]['video_id'], | |
'youtube_id': self.dataset.iloc[idx]['youtube_id'], | |
'description': self.dataset.iloc[idx]['description'], | |
'start_time': self.dataset.iloc[idx]['start_time'], | |
'end_time': self.dataset.iloc[idx]['end_time'], | |
'relevance_score': float(combined_sims[idx]), | |
'views': self.dataset.iloc[idx]['views'] | |
}) | |
return results | |
async def generate_speech(text, voice="en-US-AriaNeural"): | |
"""Generate speech using Edge TTS""" | |
if not text.strip(): | |
return None | |
communicate = edge_tts.Communicate(text, voice) | |
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" | |
await communicate.save(audio_file) | |
return audio_file | |
def main(): | |
st.title("π₯ Video Search with Speech Recognition") | |
# Initialize video search | |
search = VideoSearch() | |
# Create tabs | |
tab1, tab2, tab3 = st.tabs(["π Search", "ποΈ Voice Input", "πΎ History"]) | |
with tab1: | |
st.subheader("Search Videos") | |
# Text search | |
query = st.text_input("Enter your search query:") | |
col1, col2 = st.columns(2) | |
with col1: | |
search_button = st.button("π Search") | |
with col2: | |
num_results = st.slider("Number of results:", 1, 10, 5) | |
if search_button and query: | |
results = search.search(query, num_results) | |
st.session_state['search_history'].append({ | |
'query': query, | |
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
'results': results | |
}) | |
for i, result in enumerate(results, 1): | |
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1): | |
cols = st.columns([2, 1]) | |
with cols[0]: | |
st.markdown(f"**Full Description:**") | |
st.write(result['description']) | |
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s") | |
st.markdown(f"**Views:** {result['views']:,}") | |
with cols[1]: | |
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}") | |
if result['youtube_id']: | |
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}") | |
# Generate audio summary | |
if st.button(f"π Generate Audio Summary", key=f"audio_{i}"): | |
summary = f"Video summary: {result['description'][:200]}" | |
audio_file = asyncio.run(generate_speech(summary)) | |
if audio_file: | |
st.audio(audio_file) | |
# Cleanup audio file | |
if os.path.exists(audio_file): | |
os.remove(audio_file) | |
with tab2: | |
st.subheader("Voice Input") | |
# Speech recognition component | |
voice_input = speech_component() | |
if voice_input and voice_input != st.session_state['last_voice_input']: | |
st.session_state['last_voice_input'] = voice_input | |
st.markdown("**Transcribed Text:**") | |
st.write(voice_input) | |
if st.button("π Search Videos"): | |
results = search.search(voice_input, num_results) | |
st.session_state['search_history'].append({ | |
'query': voice_input, | |
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
'results': results | |
}) | |
for i, result in enumerate(results, 1): | |
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1): | |
st.write(result['description']) | |
if result['youtube_id']: | |
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}") | |
with tab3: | |
st.subheader("Search History") | |
if st.button("ποΈ Clear History"): | |
st.session_state['search_history'] = [] | |
st.experimental_rerun() | |
for i, entry in enumerate(reversed(st.session_state['search_history'])): | |
with st.expander(f"Query: {entry['query']} ({entry['timestamp']})", expanded=False): | |
st.markdown(f"**Original Query:** {entry['query']}") | |
st.markdown(f"**Time:** {entry['timestamp']}") | |
for j, result in enumerate(entry['results'], 1): | |
st.markdown(f"**Result {j}:**") | |
st.write(result['description']) | |
if result['youtube_id']: | |
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}") | |
# Sidebar configuration | |
with st.sidebar: | |
st.subheader("βοΈ Configuration") | |
st.markdown("**Video Search Settings**") | |
st.slider("Default Results:", 1, 10, 5, key="default_results") | |
st.markdown("**Voice Settings**") | |
st.selectbox("TTS Voice:", | |
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"], | |
key="tts_voice") | |
st.markdown("**Model Settings**") | |
st.selectbox("Text Embedding Model:", | |
["all-MiniLM-L6-v2", "paraphrase-multilingual-MiniLM-L12-v2"], | |
key="embedding_model") | |
if st.button("π₯ Download Search History"): | |
# Convert history to JSON | |
history_json = json.dumps(st.session_state['search_history'], indent=2) | |
b64 = base64.b64encode(history_json.encode()).decode() | |
href = f'<a href="data:file/json;base64,{b64}" download="search_history.json">Download JSON</a>' | |
st.markdown(href, unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() |