Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,8 +11,6 @@ from datetime import datetime
|
|
| 11 |
import edge_tts
|
| 12 |
import asyncio
|
| 13 |
import base64
|
| 14 |
-
from openai import OpenAI
|
| 15 |
-
import anthropic
|
| 16 |
import streamlit.components.v1 as components
|
| 17 |
|
| 18 |
# Page configuration
|
|
@@ -23,17 +21,11 @@ st.set_page_config(
|
|
| 23 |
)
|
| 24 |
|
| 25 |
# Initialize session state
|
| 26 |
-
if 'messages' not in st.session_state:
|
| 27 |
-
st.session_state['messages'] = []
|
| 28 |
if 'search_history' not in st.session_state:
|
| 29 |
st.session_state['search_history'] = []
|
| 30 |
if 'last_voice_input' not in st.session_state:
|
| 31 |
st.session_state['last_voice_input'] = ""
|
| 32 |
|
| 33 |
-
# Load environment variables
|
| 34 |
-
openai_client = OpenAI()
|
| 35 |
-
claude_client = anthropic.Anthropic()
|
| 36 |
-
|
| 37 |
# Initialize the speech component
|
| 38 |
speech_component = components.declare_component("speech_recognition", path="mycomponent")
|
| 39 |
|
|
@@ -42,12 +34,53 @@ class VideoSearch:
|
|
| 42 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 43 |
self.load_dataset()
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
def load_dataset(self):
|
| 46 |
"""Load the Omega Multimodal dataset"""
|
| 47 |
try:
|
| 48 |
-
#
|
| 49 |
-
self.dataset =
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
except Exception as e:
|
| 52 |
st.error(f"Error loading dataset: {e}")
|
| 53 |
self.create_dummy_data()
|
|
@@ -55,16 +88,23 @@ class VideoSearch:
|
|
| 55 |
def prepare_features(self):
|
| 56 |
"""Prepare and cache embeddings"""
|
| 57 |
# Convert string representations of embeddings back to numpy arrays
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
def create_dummy_data(self):
|
| 64 |
"""Create dummy data for testing"""
|
| 65 |
self.dataset = pd.DataFrame({
|
| 66 |
'video_id': [f'video_{i}' for i in range(10)],
|
| 67 |
-
'youtube_id': ['dQw4w9WgXcQ'] * 10,
|
| 68 |
'description': ['Sample video description'] * 10,
|
| 69 |
'views': [1000] * 10,
|
| 70 |
'start_time': [0] * 10,
|
|
@@ -74,6 +114,7 @@ class VideoSearch:
|
|
| 74 |
self.video_embeds = np.random.randn(10, 384) # Match model dimensions
|
| 75 |
self.text_embeds = np.random.randn(10, 384)
|
| 76 |
|
|
|
|
| 77 |
def search(self, query, top_k=5):
|
| 78 |
"""Search videos using query"""
|
| 79 |
query_embedding = self.text_model.encode([query])[0]
|
|
@@ -112,31 +153,6 @@ async def generate_speech(text, voice="en-US-AriaNeural"):
|
|
| 112 |
await communicate.save(audio_file)
|
| 113 |
return audio_file
|
| 114 |
|
| 115 |
-
def process_with_gpt4(prompt):
|
| 116 |
-
"""Process text with GPT-4"""
|
| 117 |
-
try:
|
| 118 |
-
response = openai_client.chat.completions.create(
|
| 119 |
-
model="gpt-4",
|
| 120 |
-
messages=[{"role": "user", "content": prompt}]
|
| 121 |
-
)
|
| 122 |
-
return response.choices[0].message.content
|
| 123 |
-
except Exception as e:
|
| 124 |
-
st.error(f"Error with GPT-4: {e}")
|
| 125 |
-
return None
|
| 126 |
-
|
| 127 |
-
def process_with_claude(prompt):
|
| 128 |
-
"""Process text with Claude"""
|
| 129 |
-
try:
|
| 130 |
-
response = claude_client.messages.create(
|
| 131 |
-
model="claude-3-sonnet-20240229",
|
| 132 |
-
max_tokens=1000,
|
| 133 |
-
messages=[{"role": "user", "content": prompt}]
|
| 134 |
-
)
|
| 135 |
-
return response.content[0].text
|
| 136 |
-
except Exception as e:
|
| 137 |
-
st.error(f"Error with Claude: {e}")
|
| 138 |
-
return None
|
| 139 |
-
|
| 140 |
def main():
|
| 141 |
st.title("🎥 Video Search with Speech Recognition")
|
| 142 |
|
|
@@ -202,34 +218,18 @@ def main():
|
|
| 202 |
st.markdown("**Transcribed Text:**")
|
| 203 |
st.write(voice_input)
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
})
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
st.
|
| 217 |
-
if result['youtube_id']:
|
| 218 |
-
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
| 219 |
-
|
| 220 |
-
with cols[1]:
|
| 221 |
-
if st.button("🤖 Process with GPT-4"):
|
| 222 |
-
gpt_response = process_with_gpt4(voice_input)
|
| 223 |
-
if gpt_response:
|
| 224 |
-
st.markdown("**GPT-4 Response:**")
|
| 225 |
-
st.write(gpt_response)
|
| 226 |
-
|
| 227 |
-
with cols[2]:
|
| 228 |
-
if st.button("🧠 Process with Claude"):
|
| 229 |
-
claude_response = process_with_claude(voice_input)
|
| 230 |
-
if claude_response:
|
| 231 |
-
st.markdown("**Claude Response:**")
|
| 232 |
-
st.write(claude_response)
|
| 233 |
|
| 234 |
with tab3:
|
| 235 |
st.subheader("Search History")
|
|
|
|
| 11 |
import edge_tts
|
| 12 |
import asyncio
|
| 13 |
import base64
|
|
|
|
|
|
|
| 14 |
import streamlit.components.v1 as components
|
| 15 |
|
| 16 |
# Page configuration
|
|
|
|
| 21 |
)
|
| 22 |
|
| 23 |
# Initialize session state
|
|
|
|
|
|
|
| 24 |
if 'search_history' not in st.session_state:
|
| 25 |
st.session_state['search_history'] = []
|
| 26 |
if 'last_voice_input' not in st.session_state:
|
| 27 |
st.session_state['last_voice_input'] = ""
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# Initialize the speech component
|
| 30 |
speech_component = components.declare_component("speech_recognition", path="mycomponent")
|
| 31 |
|
|
|
|
| 34 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 35 |
self.load_dataset()
|
| 36 |
|
| 37 |
+
def fetch_dataset_rows(self):
|
| 38 |
+
"""Fetch dataset from Hugging Face API"""
|
| 39 |
+
import requests
|
| 40 |
+
|
| 41 |
+
# Fetch first rows from the dataset
|
| 42 |
+
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
|
| 43 |
+
response = requests.get(url)
|
| 44 |
+
|
| 45 |
+
if response.status_code == 200:
|
| 46 |
+
data = response.json()
|
| 47 |
+
# Extract the rows from the response
|
| 48 |
+
rows = data.get('rows', [])
|
| 49 |
+
return pd.DataFrame(rows)
|
| 50 |
+
else:
|
| 51 |
+
st.error(f"Error fetching dataset: {response.status_code}")
|
| 52 |
+
return None
|
| 53 |
+
|
| 54 |
+
def get_dataset_splits(self):
|
| 55 |
+
"""Get available dataset splits"""
|
| 56 |
+
import requests
|
| 57 |
+
|
| 58 |
+
url = "https://datasets-server.huggingface.co/splits?dataset=omegalabsinc%2Fomega-multimodal"
|
| 59 |
+
response = requests.get(url)
|
| 60 |
+
|
| 61 |
+
if response.status_code == 200:
|
| 62 |
+
splits_data = response.json()
|
| 63 |
+
return splits_data
|
| 64 |
+
else:
|
| 65 |
+
st.error(f"Error fetching splits: {response.status_code}")
|
| 66 |
+
return None
|
| 67 |
+
|
| 68 |
def load_dataset(self):
|
| 69 |
"""Load the Omega Multimodal dataset"""
|
| 70 |
try:
|
| 71 |
+
# Fetch dataset from Hugging Face API
|
| 72 |
+
self.dataset = self.fetch_dataset_rows()
|
| 73 |
+
|
| 74 |
+
if self.dataset is not None:
|
| 75 |
+
# Get dataset splits info
|
| 76 |
+
splits_info = self.get_dataset_splits()
|
| 77 |
+
if splits_info:
|
| 78 |
+
st.sidebar.write("Available splits:", splits_info)
|
| 79 |
+
|
| 80 |
+
self.prepare_features()
|
| 81 |
+
else:
|
| 82 |
+
self.create_dummy_data()
|
| 83 |
+
|
| 84 |
except Exception as e:
|
| 85 |
st.error(f"Error loading dataset: {e}")
|
| 86 |
self.create_dummy_data()
|
|
|
|
| 88 |
def prepare_features(self):
|
| 89 |
"""Prepare and cache embeddings"""
|
| 90 |
# Convert string representations of embeddings back to numpy arrays
|
| 91 |
+
try:
|
| 92 |
+
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
| 93 |
+
for e in self.dataset.video_embed])
|
| 94 |
+
self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
| 95 |
+
for e in self.dataset.description_embed])
|
| 96 |
+
except Exception as e:
|
| 97 |
+
st.error(f"Error preparing features: {e}")
|
| 98 |
+
# Create random embeddings as fallback
|
| 99 |
+
num_rows = len(self.dataset)
|
| 100 |
+
self.video_embeds = np.random.randn(num_rows, 384)
|
| 101 |
+
self.text_embeds = np.random.randn(num_rows, 384)
|
| 102 |
|
| 103 |
def create_dummy_data(self):
|
| 104 |
"""Create dummy data for testing"""
|
| 105 |
self.dataset = pd.DataFrame({
|
| 106 |
'video_id': [f'video_{i}' for i in range(10)],
|
| 107 |
+
'youtube_id': ['dQw4w9WgXcQ'] * 10,
|
| 108 |
'description': ['Sample video description'] * 10,
|
| 109 |
'views': [1000] * 10,
|
| 110 |
'start_time': [0] * 10,
|
|
|
|
| 114 |
self.video_embeds = np.random.randn(10, 384) # Match model dimensions
|
| 115 |
self.text_embeds = np.random.randn(10, 384)
|
| 116 |
|
| 117 |
+
|
| 118 |
def search(self, query, top_k=5):
|
| 119 |
"""Search videos using query"""
|
| 120 |
query_embedding = self.text_model.encode([query])[0]
|
|
|
|
| 153 |
await communicate.save(audio_file)
|
| 154 |
return audio_file
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
def main():
|
| 157 |
st.title("🎥 Video Search with Speech Recognition")
|
| 158 |
|
|
|
|
| 218 |
st.markdown("**Transcribed Text:**")
|
| 219 |
st.write(voice_input)
|
| 220 |
|
| 221 |
+
if st.button("🔍 Search Videos"):
|
| 222 |
+
results = search.search(voice_input, num_results)
|
| 223 |
+
st.session_state['search_history'].append({
|
| 224 |
+
'query': voice_input,
|
| 225 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 226 |
+
'results': results
|
| 227 |
+
})
|
| 228 |
+
for i, result in enumerate(results, 1):
|
| 229 |
+
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1):
|
| 230 |
+
st.write(result['description'])
|
| 231 |
+
if result['youtube_id']:
|
| 232 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
with tab3:
|
| 235 |
st.subheader("Search History")
|