File size: 24,512 Bytes
642b060
 
 
 
 
 
 
 
 
 
 
ae1d609
 
 
642b060
 
ae1d609
 
642b060
 
 
ae1d609
642b060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158250
0b7e2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
 
 
0b7e2f0
ae1d609
 
 
0b7e2f0
ae1d609
0b7e2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1d609
0b7e2f0
 
 
ae1d609
 
0b7e2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1d609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
 
 
 
 
 
ae1d609
 
642b060
ae1d609
 
 
 
642b060
ae1d609
642b060
ae1d609
 
 
642b060
ae1d609
642b060
ae1d609
1158250
642b060
ae1d609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b7e2f0
ae1d609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1d609
 
 
 
642b060
ae1d609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
1158250
ae1d609
 
 
 
 
 
0b7e2f0
ae1d609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
0b7e2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1d609
642b060
 
 
 
1158250
ae1d609
642b060
 
 
 
 
 
ae1d609
642b060
 
 
 
 
0b7e2f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import base64
import requests
from collections import defaultdict
from audio_recorder_streamlit import audio_recorder
import streamlit.components.v1 as components
from urllib.parse import quote
from xml.etree import ElementTree as ET

# Initialize session state
if 'search_history' not in st.session_state:
    st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""
if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False
if 'search_columns' not in st.session_state:
    st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
    st.session_state['initial_search_done'] = False
if 'tts_voice' not in st.session_state:
    st.session_state['tts_voice'] = "en-US-AriaNeural"
if 'arxiv_last_query' not in st.session_state:
    st.session_state['arxiv_last_query'] = ""

def fetch_dataset_info(dataset_id):
    """Fetch dataset information including all available configs and splits"""
    info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
    try:
        response = requests.get(info_url, timeout=30)
        if response.status_code == 200:
            return response.json()
    except Exception as e:
        st.warning(f"Error fetching dataset info: {e}")
    return None

def fetch_dataset_rows(dataset_id, config="default", split="train", max_rows=100):
    """Fetch rows from a specific config and split of a dataset"""
    url = f"https://datasets-server.huggingface.co/first-rows?dataset={dataset_id}&config={config}&split={split}"
    try:
        response = requests.get(url, timeout=30)
        if response.status_code == 200:
            data = response.json()
            if 'rows' in data:
                processed_rows = []
                for row_data in data['rows']:
                    row = row_data.get('row', row_data)
                    # Process embeddings if present
                    for key in row:
                        if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
                            if isinstance(row[key], str):
                                try:
                                    row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
                                except:
                                    continue
                    row['_config'] = config
                    row['_split'] = split
                    processed_rows.append(row)
                return processed_rows
    except Exception as e:
        st.warning(f"Error fetching rows for {config}/{split}: {e}")
    return []

def search_dataset(dataset_id, search_text, include_configs=None, include_splits=None):
    """
    Search across all configurations and splits of a dataset
    
    Args:
        dataset_id (str): The Hugging Face dataset ID
        search_text (str): Text to search for in descriptions and queries
        include_configs (list): List of specific configs to search, or None for all
        include_splits (list): List of specific splits to search, or None for all
    
    Returns:
        tuple: (DataFrame of results, list of available configs, list of available splits)
    """
    # Get dataset info
    dataset_info = fetch_dataset_info(dataset_id)
    if not dataset_info:
        return pd.DataFrame(), [], []
    
    # Get available configs and splits
    configs = include_configs if include_configs else dataset_info.get('config_names', ['default'])
    all_rows = []
    available_splits = set()
    
    # Search across configs and splits
    for config in configs:
        try:
            # First fetch split info for this config
            splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
            splits_response = requests.get(splits_url, timeout=30)
            if splits_response.status_code == 200:
                splits_data = splits_response.json()
                splits = [split['split'] for split in splits_data.get('splits', [])]
                if not splits:
                    splits = ['train']  # fallback to train if no splits found
                
                # Filter splits if specified
                if include_splits:
                    splits = [s for s in splits if s in include_splits]
                
                available_splits.update(splits)
                
                # Fetch and search rows for each split
                for split in splits:
                    rows = fetch_dataset_rows(dataset_id, config, split)
                    for row in rows:
                        # Search in all text fields
                        text_content = ' '.join(str(v) for v in row.values() if isinstance(v, (str, int, float)))
                        if search_text.lower() in text_content.lower():
                            row['_matched_text'] = text_content
                            row['_relevance_score'] = text_content.lower().count(search_text.lower())
                            all_rows.append(row)
        
        except Exception as e:
            st.warning(f"Error processing config {config}: {e}")
            continue
    
    # Convert to DataFrame and sort by relevance
    if all_rows:
        df = pd.DataFrame(all_rows)
        df = df.sort_values('_relevance_score', ascending=False)
        return df, configs, list(available_splits)
    
    return pd.DataFrame(), configs, list(available_splits)

class VideoSearch:
    def __init__(self):
        self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
        self.dataset_id = "omegalabsinc/omega-multimodal"
        self.load_dataset()
        
    def fetch_dataset_rows(self):
        """Fetch dataset with enhanced search capabilities"""
        try:
            # First try to get all available data
            df, configs, splits = search_dataset(
                self.dataset_id,
                "",  # empty search text to get all data
                include_configs=None,  # all configs
                include_splits=None    # all splits
            )
            
            if not df.empty:
                st.session_state['search_columns'] = [col for col in df.columns 
                    if col not in ['video_embed', 'description_embed', 'audio_embed']
                    and not col.startswith('_')]
                return df
                
            return self.load_example_data()
            
        except Exception as e:
            st.warning(f"Error loading dataset: {e}")
            return self.load_example_data()

    def load_example_data(self):
        """Load example data as fallback"""
        example_data = [
            {
                "video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
                "youtube_id": "IO-vwtyicn4",
                "description": "This video shows a close-up of an ancient text carved into a surface.",
                "views": 45489,
                "start_time": 1452,
                "end_time": 1458,
                "video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
                "description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
            }
        ]
        return pd.DataFrame(example_data)

    def prepare_features(self):
        """Prepare embeddings with adaptive field detection"""
        try:
            embed_cols = [col for col in self.dataset.columns 
                         if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
            
            embeddings = {}
            for col in embed_cols:
                try:
                    data = []
                    for row in self.dataset[col]:
                        if isinstance(row, str):
                            values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()]
                        elif isinstance(row, list):
                            values = row
                        else:
                            continue
                        data.append(values)
                    
                    if data:
                        embeddings[col] = np.array(data)
                except:
                    continue
            
            # Set main embeddings for search
            if 'video_embed' in embeddings:
                self.video_embeds = embeddings['video_embed']
            else:
                self.video_embeds = next(iter(embeddings.values()))
                
            if 'description_embed' in embeddings:
                self.text_embeds = embeddings['description_embed']
            else:
                self.text_embeds = self.video_embeds
                
        except:
            # Fallback to random embeddings
            num_rows = len(self.dataset)
            self.video_embeds = np.random.randn(num_rows, 384)
            self.text_embeds = np.random.randn(num_rows, 384)
    
    def load_dataset(self):
        self.dataset = self.fetch_dataset_rows()
        self.prepare_features()

    def search(self, query, column=None, top_k=20):
        query_embedding = self.text_model.encode([query])[0]
        video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
        text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
        combined_sims = 0.5 * video_sims + 0.5 * text_sims
        
        # Column filtering
        if column and column in self.dataset.columns and column != "All Fields":
            mask = self.dataset[column].astype(str).str.contains(query, case=False)
            combined_sims[~mask] *= 0.5
        
        top_k = min(top_k, 100)
        top_indices = np.argsort(combined_sims)[-top_k:][::-1]
        
        results = []
        for idx in top_indices:
            result = {'relevance_score': float(combined_sims[idx])}
            for col in self.dataset.columns:
                if col not in ['video_embed', 'description_embed', 'audio_embed']:
                    result[col] = self.dataset.iloc[idx][col]
            results.append(result)
        
        return results

@st.cache_resource
def get_speech_model():
    return edge_tts.Communicate

async def generate_speech(text, voice=None):
    if not text.strip():
        return None
    if not voice:
        voice = st.session_state['tts_voice']
    try:
        communicate = get_speech_model()(text, voice)
        audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
        await communicate.save(audio_file)
        return audio_file
    except Exception as e:
        st.error(f"Error generating speech: {e}")
        return None

def transcribe_audio(audio_path):
    """Placeholder for ASR transcription"""
    return "ASR not implemented. Integrate a local model or another service here."

def show_file_manager():
    """Display file manager interface"""
    st.subheader("πŸ“‚ File Manager")
    col1, col2 = st.columns(2)
    with col1:
        uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
        if uploaded_file:
            with open(uploaded_file.name, "wb") as f:
                f.write(uploaded_file.getvalue())
            st.success(f"Uploaded: {uploaded_file.name}")
            st.experimental_rerun()
    
    with col2:
        if st.button("πŸ—‘ Clear All Files"):
            for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
                os.remove(f)
            st.success("All files cleared!")
            st.experimental_rerun()
    
    files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
    if files:
        st.write("### Existing Files")
        for f in files:
            with st.expander(f"πŸ“„ {os.path.basename(f)}"):
                if f.endswith('.mp3'):
                    st.audio(f)
                else:
                    with open(f, 'r', encoding='utf-8') as file:
                        st.text_area("Content", file.read(), height=100)
                if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
                    os.remove(f)
                    st.experimental_rerun()

def arxiv_search(query, max_results=5):
    """Perform a simple Arxiv search using their API and return top results."""
    base_url = "http://export.arxiv.org/api/query?"
    search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
    r = requests.get(search_url)
    if r.status_code == 200:
        root = ET.fromstring(r.text)
        ns = {'atom': 'http://www.w3.org/2005/Atom'}
        entries = root.findall('atom:entry', ns)
        results = []
        for entry in entries:
            title = entry.find('atom:title', ns).text.strip()
            summary = entry.find('atom:summary', ns).text.strip()
            link = None
            for l in entry.findall('atom:link', ns):
                if l.get('type') == 'text/html':
                    link = l.get('href')
                    break
            results.append((title, summary, link))
        return results
    return []

def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=False):
    results = arxiv_search(q, max_results=5)
    if not results:
        st.write("No Arxiv results found.")
        return
    st.markdown(f"**Arxiv Search Results for '{q}':**")
    for i, (title, summary, link) in enumerate(results, start=1):
        st.markdown(f"**{i}. {title}**")
        st.write(summary)
        if link:
            st.markdown(f"[View Paper]({link})")

    if vocal_summary:
        spoken_text = f"Here are some Arxiv results for {q}. "
        if titles_summary:
            spoken_text += " Titles: " + ", ".join([res[0] for res in results])
        else:
            # Just first summary if no titles_summary
            spoken_text += " " + results[0][1][:200]

        audio_file = asyncio.run(generate_speech(spoken_text))
        if audio_file:
            st.audio(audio_file)
    
    if full_audio:
        # Full audio of summaries
        full_text = ""
        for i,(title, summary, _) in enumerate(results, start=1):
            full_text += f"Result {i}: {title}. {summary} "
        audio_file_full = asyncio.run(generate_speech(full_text))
        if audio_file_full:
            st.write("### Full Audio")
            st.audio(audio_file_full)

def main():
    st.title("πŸŽ₯ Video & Arxiv Search with Voice (No OpenAI/Anthropic)")
    
    # Initialize search class
    search = VideoSearch()
    
    # Create tabs
    tab1, tab2, tab3, tab4, tab5 = st.tabs(["πŸ” Search", "πŸŽ™οΈ Voice Input", "πŸ“š Arxiv", "πŸ“‚ Files", "πŸ” Advanced Search"])
    
    # ---- Tab 1: Video Search ----
    with tab1:
        st.subheader("Search Videos")
        col1, col2 = st.columns([3, 1])
        with col1:
            query = st.text_input("Enter your search query:", 
                                  value="ancient" if not st.session_state['initial_search_done'] else "")
        with col2:
            search_column = st.selectbox("Search in field:", 
                                       ["All Fields"] + st.session_state['search_columns'])
        
        col3, col4 = st.columns(2)
        with col3:
            num_results = st.slider("Number of results:", 1, 100, 20)
        with col4:
            search_button = st.button("πŸ” Search")
        
        if (search_button or not st.session_state['initial_search_done']) and query:
            st.session_state['initial_search_done'] = True
            selected_column = None if search_column == "All Fields" else search_column
            with st.spinner("Searching..."):
                results = search.search(query, selected_column, num_results)
            
            st.session_state['search_history'].append({
                'query': query,
                'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                'results': results[:5]
            })
            
            for i, result in enumerate(results, 1):
                with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i==1)):
                    cols = st.columns([2, 1])
                    with cols[0]:
                        st.markdown("**Description:**")
                        st.write(result['description'])
                        st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
                        st.markdown(f"**Views:** {result['views']:,}")
                    
                    with cols[1]:
                        st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
                        if result.get('youtube_id'):
                            st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
                        
                        if st.button(f"πŸ”Š Audio Summary", key=f"audio_{i}"):
                            summary = f"Video summary: {result['description'][:200]}"
                            audio_file = asyncio.run(generate_speech(summary))
                            if audio_file:
                                st.audio(audio_file)

    # ---- Tab 2: Voice Input ----
    with tab2:
        st.subheader("Voice Input")
        st.write("πŸŽ™οΈ Record your voice:")
        audio_bytes = audio_recorder()
        if audio_bytes:
            audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
            with open(audio_path, "wb") as f:
                f.write(audio_bytes)
            st.success("Audio recorded successfully!")
            
            voice_query = transcribe_audio(audio_path)
            st.markdown("**Transcribed Text:**")
            st.write(voice_query)
            st.session_state['last_voice_input'] = voice_query
            
            if st.button("πŸ” Search from Voice"):
                results = search.search(voice_query, None, 20)
                for i, result in enumerate(results, 1):
                    with st.expander(f"Result {i}", expanded=(i==1)):
                        st.write(result['description'])
                        if result.get('youtube_id'):
                            st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
            
            if os.path.exists(audio_path):
                os.remove(audio_path)

    # ---- Tab 3: Arxiv Search ----
    with tab3:
        st.subheader("Arxiv Search")
        q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
        vocal_summary = st.checkbox("πŸŽ™ Short Audio Summary", value=True)
        titles_summary = st.checkbox("πŸ”– Titles Only", value=True)
        full_audio = st.checkbox("πŸ“š Full Audio Results", value=False)
        
        if st.button("πŸ” Arxiv Search"):
            st.session_state['arxiv_last_query'] = q
            perform_arxiv_lookup(q, vocal_summary=vocal_summary, titles_summary=titles_summary, full_audio=full_audio)

    # ---- Tab 4: File Manager ----
    with tab4:
        show_file_manager()

    # ---- Tab 5: Advanced Dataset Search ----
    with tab5:
        st.subheader("Advanced Dataset Search")
        
        # Dataset input
        dataset_id = st.text_input("Dataset ID:", value="omegalabsinc/omega-multimodal")
        
        # Search configuration
        col1, col2 = st.columns([2, 1])
        with col1:
            search_text = st.text_input("Search text:", 
                placeholder="Enter text to search across all fields")
        
        # Get available configs and splits
        if dataset_id:
            dataset_info = fetch_dataset_info(dataset_id)
            if dataset_info:
                configs = dataset_info.get('config_names', ['default'])
                with col2:
                    selected_configs = st.multiselect(
                        "Configurations:",
                        options=configs,
                        default=['default'] if 'default' in configs else None
                    )
                
                # Fetch available splits
                if selected_configs:
                    all_splits = set()
                    for config in selected_configs:
                        splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
                        try:
                            response = requests.get(splits_url, timeout=30)
                            if response.status_code == 200:
                                splits_data = response.json()
                                splits = [split['split'] for split in splits_data.get('splits', [])]
                                all_splits.update(splits)
                        except Exception as e:
                            st.warning(f"Error fetching splits for {config}: {e}")
                    
                    selected_splits = st.multiselect(
                        "Splits:",
                        options=list(all_splits),
                        default=['train'] if 'train' in all_splits else None
                    )
                    
                    if st.button("πŸ” Search Dataset"):
                        with st.spinner("Searching dataset..."):
                            results_df, _, _ = search_dataset(
                                dataset_id,
                                search_text,
                                include_configs=selected_configs,
                                include_splits=selected_splits
                            )
                            
                            if not results_df.empty:
                                st.write(f"Found {len(results_df)} results")
                                
                                # Display results in expandable sections
                                for idx, row in results_df.iterrows():
                                    with st.expander(
                                        f"Result {idx+1} (Config: {row['_config']}, Split: {row['_split']}, Score: {row['_relevance_score']})"
                                    ):
                                        # Display all fields except internal ones
                                        for col in row.index:
                                            if not col.startswith('_') and not any(
                                                term in col.lower() 
                                                for term in ['embed', 'vector', 'encoding']
                                            ):
                                                st.write(f"**{col}:** {row[col]}")
                                        
                                        # Add buttons for audio/video if available
                                        if 'youtube_id' in row:
                                            st.video(
                                                f"https://youtube.com/watch?v={row['youtube_id']}&t={row.get('start_time', 0)}"
                                            )
                            else:
                                st.warning("No results found.")
            else:
                st.error("Unable to fetch dataset information.")

    # Sidebar
    with st.sidebar:
        st.subheader("βš™οΈ Settings & History")
        if st.button("πŸ—‘οΈ Clear History"):
            st.session_state['search_history'] = []
            st.experimental_rerun()
        
        st.markdown("### Recent Searches")
        for entry in reversed(st.session_state['search_history'][-5:]):
            with st.expander(f"{entry['timestamp']}: {entry['query']}"):
                for i, result in enumerate(entry['results'], 1):
                    st.write(f"{i}. {result['description'][:100]}...")

        st.markdown("### Voice Settings")
        st.selectbox("TTS Voice:", 
                     ["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
                     key="tts_voice")

if __name__ == "__main__":
    main()