File size: 24,512 Bytes
642b060 ae1d609 642b060 ae1d609 642b060 ae1d609 642b060 1158250 0b7e2f0 642b060 0b7e2f0 ae1d609 0b7e2f0 ae1d609 0b7e2f0 ae1d609 0b7e2f0 ae1d609 0b7e2f0 ae1d609 642b060 ae1d609 642b060 ae1d609 642b060 ae1d609 642b060 ae1d609 642b060 ae1d609 642b060 ae1d609 1158250 642b060 ae1d609 0b7e2f0 ae1d609 642b060 ae1d609 642b060 ae1d609 642b060 1158250 ae1d609 0b7e2f0 ae1d609 642b060 0b7e2f0 ae1d609 642b060 1158250 ae1d609 642b060 ae1d609 642b060 0b7e2f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import base64
import requests
from collections import defaultdict
from audio_recorder_streamlit import audio_recorder
import streamlit.components.v1 as components
from urllib.parse import quote
from xml.etree import ElementTree as ET
# Initialize session state
if 'search_history' not in st.session_state:
st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'search_columns' not in st.session_state:
st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
st.session_state['initial_search_done'] = False
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = "en-US-AriaNeural"
if 'arxiv_last_query' not in st.session_state:
st.session_state['arxiv_last_query'] = ""
def fetch_dataset_info(dataset_id):
"""Fetch dataset information including all available configs and splits"""
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
try:
response = requests.get(info_url, timeout=30)
if response.status_code == 200:
return response.json()
except Exception as e:
st.warning(f"Error fetching dataset info: {e}")
return None
def fetch_dataset_rows(dataset_id, config="default", split="train", max_rows=100):
"""Fetch rows from a specific config and split of a dataset"""
url = f"https://datasets-server.huggingface.co/first-rows?dataset={dataset_id}&config={config}&split={split}"
try:
response = requests.get(url, timeout=30)
if response.status_code == 200:
data = response.json()
if 'rows' in data:
processed_rows = []
for row_data in data['rows']:
row = row_data.get('row', row_data)
# Process embeddings if present
for key in row:
if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
if isinstance(row[key], str):
try:
row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
except:
continue
row['_config'] = config
row['_split'] = split
processed_rows.append(row)
return processed_rows
except Exception as e:
st.warning(f"Error fetching rows for {config}/{split}: {e}")
return []
def search_dataset(dataset_id, search_text, include_configs=None, include_splits=None):
"""
Search across all configurations and splits of a dataset
Args:
dataset_id (str): The Hugging Face dataset ID
search_text (str): Text to search for in descriptions and queries
include_configs (list): List of specific configs to search, or None for all
include_splits (list): List of specific splits to search, or None for all
Returns:
tuple: (DataFrame of results, list of available configs, list of available splits)
"""
# Get dataset info
dataset_info = fetch_dataset_info(dataset_id)
if not dataset_info:
return pd.DataFrame(), [], []
# Get available configs and splits
configs = include_configs if include_configs else dataset_info.get('config_names', ['default'])
all_rows = []
available_splits = set()
# Search across configs and splits
for config in configs:
try:
# First fetch split info for this config
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
splits_response = requests.get(splits_url, timeout=30)
if splits_response.status_code == 200:
splits_data = splits_response.json()
splits = [split['split'] for split in splits_data.get('splits', [])]
if not splits:
splits = ['train'] # fallback to train if no splits found
# Filter splits if specified
if include_splits:
splits = [s for s in splits if s in include_splits]
available_splits.update(splits)
# Fetch and search rows for each split
for split in splits:
rows = fetch_dataset_rows(dataset_id, config, split)
for row in rows:
# Search in all text fields
text_content = ' '.join(str(v) for v in row.values() if isinstance(v, (str, int, float)))
if search_text.lower() in text_content.lower():
row['_matched_text'] = text_content
row['_relevance_score'] = text_content.lower().count(search_text.lower())
all_rows.append(row)
except Exception as e:
st.warning(f"Error processing config {config}: {e}")
continue
# Convert to DataFrame and sort by relevance
if all_rows:
df = pd.DataFrame(all_rows)
df = df.sort_values('_relevance_score', ascending=False)
return df, configs, list(available_splits)
return pd.DataFrame(), configs, list(available_splits)
class VideoSearch:
def __init__(self):
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
self.dataset_id = "omegalabsinc/omega-multimodal"
self.load_dataset()
def fetch_dataset_rows(self):
"""Fetch dataset with enhanced search capabilities"""
try:
# First try to get all available data
df, configs, splits = search_dataset(
self.dataset_id,
"", # empty search text to get all data
include_configs=None, # all configs
include_splits=None # all splits
)
if not df.empty:
st.session_state['search_columns'] = [col for col in df.columns
if col not in ['video_embed', 'description_embed', 'audio_embed']
and not col.startswith('_')]
return df
return self.load_example_data()
except Exception as e:
st.warning(f"Error loading dataset: {e}")
return self.load_example_data()
def load_example_data(self):
"""Load example data as fallback"""
example_data = [
{
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
"youtube_id": "IO-vwtyicn4",
"description": "This video shows a close-up of an ancient text carved into a surface.",
"views": 45489,
"start_time": 1452,
"end_time": 1458,
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
}
]
return pd.DataFrame(example_data)
def prepare_features(self):
"""Prepare embeddings with adaptive field detection"""
try:
embed_cols = [col for col in self.dataset.columns
if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
embeddings = {}
for col in embed_cols:
try:
data = []
for row in self.dataset[col]:
if isinstance(row, str):
values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()]
elif isinstance(row, list):
values = row
else:
continue
data.append(values)
if data:
embeddings[col] = np.array(data)
except:
continue
# Set main embeddings for search
if 'video_embed' in embeddings:
self.video_embeds = embeddings['video_embed']
else:
self.video_embeds = next(iter(embeddings.values()))
if 'description_embed' in embeddings:
self.text_embeds = embeddings['description_embed']
else:
self.text_embeds = self.video_embeds
except:
# Fallback to random embeddings
num_rows = len(self.dataset)
self.video_embeds = np.random.randn(num_rows, 384)
self.text_embeds = np.random.randn(num_rows, 384)
def load_dataset(self):
self.dataset = self.fetch_dataset_rows()
self.prepare_features()
def search(self, query, column=None, top_k=20):
query_embedding = self.text_model.encode([query])[0]
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
combined_sims = 0.5 * video_sims + 0.5 * text_sims
# Column filtering
if column and column in self.dataset.columns and column != "All Fields":
mask = self.dataset[column].astype(str).str.contains(query, case=False)
combined_sims[~mask] *= 0.5
top_k = min(top_k, 100)
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
results = []
for idx in top_indices:
result = {'relevance_score': float(combined_sims[idx])}
for col in self.dataset.columns:
if col not in ['video_embed', 'description_embed', 'audio_embed']:
result[col] = self.dataset.iloc[idx][col]
results.append(result)
return results
@st.cache_resource
def get_speech_model():
return edge_tts.Communicate
async def generate_speech(text, voice=None):
if not text.strip():
return None
if not voice:
voice = st.session_state['tts_voice']
try:
communicate = get_speech_model()(text, voice)
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
await communicate.save(audio_file)
return audio_file
except Exception as e:
st.error(f"Error generating speech: {e}")
return None
def transcribe_audio(audio_path):
"""Placeholder for ASR transcription"""
return "ASR not implemented. Integrate a local model or another service here."
def show_file_manager():
"""Display file manager interface"""
st.subheader("π File Manager")
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
if uploaded_file:
with open(uploaded_file.name, "wb") as f:
f.write(uploaded_file.getvalue())
st.success(f"Uploaded: {uploaded_file.name}")
st.experimental_rerun()
with col2:
if st.button("π Clear All Files"):
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
os.remove(f)
st.success("All files cleared!")
st.experimental_rerun()
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
if files:
st.write("### Existing Files")
for f in files:
with st.expander(f"π {os.path.basename(f)}"):
if f.endswith('.mp3'):
st.audio(f)
else:
with open(f, 'r', encoding='utf-8') as file:
st.text_area("Content", file.read(), height=100)
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
os.remove(f)
st.experimental_rerun()
def arxiv_search(query, max_results=5):
"""Perform a simple Arxiv search using their API and return top results."""
base_url = "http://export.arxiv.org/api/query?"
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
r = requests.get(search_url)
if r.status_code == 200:
root = ET.fromstring(r.text)
ns = {'atom': 'http://www.w3.org/2005/Atom'}
entries = root.findall('atom:entry', ns)
results = []
for entry in entries:
title = entry.find('atom:title', ns).text.strip()
summary = entry.find('atom:summary', ns).text.strip()
link = None
for l in entry.findall('atom:link', ns):
if l.get('type') == 'text/html':
link = l.get('href')
break
results.append((title, summary, link))
return results
return []
def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=False):
results = arxiv_search(q, max_results=5)
if not results:
st.write("No Arxiv results found.")
return
st.markdown(f"**Arxiv Search Results for '{q}':**")
for i, (title, summary, link) in enumerate(results, start=1):
st.markdown(f"**{i}. {title}**")
st.write(summary)
if link:
st.markdown(f"[View Paper]({link})")
if vocal_summary:
spoken_text = f"Here are some Arxiv results for {q}. "
if titles_summary:
spoken_text += " Titles: " + ", ".join([res[0] for res in results])
else:
# Just first summary if no titles_summary
spoken_text += " " + results[0][1][:200]
audio_file = asyncio.run(generate_speech(spoken_text))
if audio_file:
st.audio(audio_file)
if full_audio:
# Full audio of summaries
full_text = ""
for i,(title, summary, _) in enumerate(results, start=1):
full_text += f"Result {i}: {title}. {summary} "
audio_file_full = asyncio.run(generate_speech(full_text))
if audio_file_full:
st.write("### Full Audio")
st.audio(audio_file_full)
def main():
st.title("π₯ Video & Arxiv Search with Voice (No OpenAI/Anthropic)")
# Initialize search class
search = VideoSearch()
# Create tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files", "π Advanced Search"])
# ---- Tab 1: Video Search ----
with tab1:
st.subheader("Search Videos")
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Enter your search query:",
value="ancient" if not st.session_state['initial_search_done'] else "")
with col2:
search_column = st.selectbox("Search in field:",
["All Fields"] + st.session_state['search_columns'])
col3, col4 = st.columns(2)
with col3:
num_results = st.slider("Number of results:", 1, 100, 20)
with col4:
search_button = st.button("π Search")
if (search_button or not st.session_state['initial_search_done']) and query:
st.session_state['initial_search_done'] = True
selected_column = None if search_column == "All Fields" else search_column
with st.spinner("Searching..."):
results = search.search(query, selected_column, num_results)
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results[:5]
})
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i==1)):
cols = st.columns([2, 1])
with cols[0]:
st.markdown("**Description:**")
st.write(result['description'])
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
st.markdown(f"**Views:** {result['views']:,}")
with cols[1]:
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
if result.get('youtube_id'):
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
if st.button(f"π Audio Summary", key=f"audio_{i}"):
summary = f"Video summary: {result['description'][:200]}"
audio_file = asyncio.run(generate_speech(summary))
if audio_file:
st.audio(audio_file)
# ---- Tab 2: Voice Input ----
with tab2:
st.subheader("Voice Input")
st.write("ποΈ Record your voice:")
audio_bytes = audio_recorder()
if audio_bytes:
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
with open(audio_path, "wb") as f:
f.write(audio_bytes)
st.success("Audio recorded successfully!")
voice_query = transcribe_audio(audio_path)
st.markdown("**Transcribed Text:**")
st.write(voice_query)
st.session_state['last_voice_input'] = voice_query
if st.button("π Search from Voice"):
results = search.search(voice_query, None, 20)
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}", expanded=(i==1)):
st.write(result['description'])
if result.get('youtube_id'):
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
if os.path.exists(audio_path):
os.remove(audio_path)
# ---- Tab 3: Arxiv Search ----
with tab3:
st.subheader("Arxiv Search")
q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
vocal_summary = st.checkbox("π Short Audio Summary", value=True)
titles_summary = st.checkbox("π Titles Only", value=True)
full_audio = st.checkbox("π Full Audio Results", value=False)
if st.button("π Arxiv Search"):
st.session_state['arxiv_last_query'] = q
perform_arxiv_lookup(q, vocal_summary=vocal_summary, titles_summary=titles_summary, full_audio=full_audio)
# ---- Tab 4: File Manager ----
with tab4:
show_file_manager()
# ---- Tab 5: Advanced Dataset Search ----
with tab5:
st.subheader("Advanced Dataset Search")
# Dataset input
dataset_id = st.text_input("Dataset ID:", value="omegalabsinc/omega-multimodal")
# Search configuration
col1, col2 = st.columns([2, 1])
with col1:
search_text = st.text_input("Search text:",
placeholder="Enter text to search across all fields")
# Get available configs and splits
if dataset_id:
dataset_info = fetch_dataset_info(dataset_id)
if dataset_info:
configs = dataset_info.get('config_names', ['default'])
with col2:
selected_configs = st.multiselect(
"Configurations:",
options=configs,
default=['default'] if 'default' in configs else None
)
# Fetch available splits
if selected_configs:
all_splits = set()
for config in selected_configs:
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
try:
response = requests.get(splits_url, timeout=30)
if response.status_code == 200:
splits_data = response.json()
splits = [split['split'] for split in splits_data.get('splits', [])]
all_splits.update(splits)
except Exception as e:
st.warning(f"Error fetching splits for {config}: {e}")
selected_splits = st.multiselect(
"Splits:",
options=list(all_splits),
default=['train'] if 'train' in all_splits else None
)
if st.button("π Search Dataset"):
with st.spinner("Searching dataset..."):
results_df, _, _ = search_dataset(
dataset_id,
search_text,
include_configs=selected_configs,
include_splits=selected_splits
)
if not results_df.empty:
st.write(f"Found {len(results_df)} results")
# Display results in expandable sections
for idx, row in results_df.iterrows():
with st.expander(
f"Result {idx+1} (Config: {row['_config']}, Split: {row['_split']}, Score: {row['_relevance_score']})"
):
# Display all fields except internal ones
for col in row.index:
if not col.startswith('_') and not any(
term in col.lower()
for term in ['embed', 'vector', 'encoding']
):
st.write(f"**{col}:** {row[col]}")
# Add buttons for audio/video if available
if 'youtube_id' in row:
st.video(
f"https://youtube.com/watch?v={row['youtube_id']}&t={row.get('start_time', 0)}"
)
else:
st.warning("No results found.")
else:
st.error("Unable to fetch dataset information.")
# Sidebar
with st.sidebar:
st.subheader("βοΈ Settings & History")
if st.button("ποΈ Clear History"):
st.session_state['search_history'] = []
st.experimental_rerun()
st.markdown("### Recent Searches")
for entry in reversed(st.session_state['search_history'][-5:]):
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
for i, result in enumerate(entry['results'], 1):
st.write(f"{i}. {result['description'][:100]}...")
st.markdown("### Voice Settings")
st.selectbox("TTS Voice:",
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
key="tts_voice")
if __name__ == "__main__":
main() |