Update app.py
Browse files
app.py
CHANGED
@@ -37,39 +37,153 @@ if 'tts_voice' not in st.session_state:
|
|
37 |
if 'arxiv_last_query' not in st.session_state:
|
38 |
st.session_state['arxiv_last_query'] = ""
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
class VideoSearch:
|
41 |
def __init__(self):
|
42 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
43 |
self.load_dataset()
|
44 |
|
45 |
def fetch_dataset_rows(self):
|
46 |
-
"""Fetch dataset
|
47 |
try:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
continue
|
63 |
-
processed_rows.append(row)
|
64 |
-
|
65 |
-
df = pd.DataFrame(processed_rows)
|
66 |
-
st.session_state['search_columns'] = [col for col in df.columns
|
67 |
-
if col not in ['video_embed', 'description_embed', 'audio_embed']]
|
68 |
-
return df
|
69 |
return self.load_example_data()
|
70 |
-
|
|
|
|
|
71 |
return self.load_example_data()
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def prepare_features(self):
|
74 |
"""Prepare embeddings with adaptive field detection"""
|
75 |
try:
|
@@ -110,22 +224,6 @@ class VideoSearch:
|
|
110 |
num_rows = len(self.dataset)
|
111 |
self.video_embeds = np.random.randn(num_rows, 384)
|
112 |
self.text_embeds = np.random.randn(num_rows, 384)
|
113 |
-
|
114 |
-
def load_example_data(self):
|
115 |
-
"""Load example data as fallback"""
|
116 |
-
example_data = [
|
117 |
-
{
|
118 |
-
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
|
119 |
-
"youtube_id": "IO-vwtyicn4",
|
120 |
-
"description": "This video shows a close-up of an ancient text carved into a surface.",
|
121 |
-
"views": 45489,
|
122 |
-
"start_time": 1452,
|
123 |
-
"end_time": 1458,
|
124 |
-
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
|
125 |
-
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
|
126 |
-
}
|
127 |
-
]
|
128 |
-
return pd.DataFrame(example_data)
|
129 |
|
130 |
def load_dataset(self):
|
131 |
self.dataset = self.fetch_dataset_rows()
|
@@ -174,9 +272,7 @@ async def generate_speech(text, voice=None):
|
|
174 |
return None
|
175 |
|
176 |
def transcribe_audio(audio_path):
|
177 |
-
"""Placeholder for ASR transcription
|
178 |
-
Integrate your own ASR model or API here."""
|
179 |
-
# For now, just return a message:
|
180 |
return "ASR not implemented. Integrate a local model or another service here."
|
181 |
|
182 |
def show_file_manager():
|
@@ -215,12 +311,10 @@ def show_file_manager():
|
|
215 |
def arxiv_search(query, max_results=5):
|
216 |
"""Perform a simple Arxiv search using their API and return top results."""
|
217 |
base_url = "http://export.arxiv.org/api/query?"
|
218 |
-
# Encode the query
|
219 |
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
|
220 |
r = requests.get(search_url)
|
221 |
if r.status_code == 200:
|
222 |
root = ET.fromstring(r.text)
|
223 |
-
# Namespace handling
|
224 |
ns = {'atom': 'http://www.w3.org/2005/Atom'}
|
225 |
entries = root.findall('atom:entry', ns)
|
226 |
results = []
|
@@ -248,7 +342,6 @@ def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=
|
|
248 |
if link:
|
249 |
st.markdown(f"[View Paper]({link})")
|
250 |
|
251 |
-
# TTS Options
|
252 |
if vocal_summary:
|
253 |
spoken_text = f"Here are some Arxiv results for {q}. "
|
254 |
if titles_summary:
|
@@ -278,7 +371,7 @@ def main():
|
|
278 |
search = VideoSearch()
|
279 |
|
280 |
# Create tabs
|
281 |
-
tab1, tab2, tab3, tab4 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files"])
|
282 |
|
283 |
# ---- Tab 1: Video Search ----
|
284 |
with tab1:
|
@@ -332,7 +425,6 @@ def main():
|
|
332 |
# ---- Tab 2: Voice Input ----
|
333 |
with tab2:
|
334 |
st.subheader("Voice Input")
|
335 |
-
|
336 |
st.write("ποΈ Record your voice:")
|
337 |
audio_bytes = audio_recorder()
|
338 |
if audio_bytes:
|
@@ -373,6 +465,86 @@ def main():
|
|
373 |
with tab4:
|
374 |
show_file_manager()
|
375 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
# Sidebar
|
377 |
with st.sidebar:
|
378 |
st.subheader("βοΈ Settings & History")
|
@@ -392,4 +564,4 @@ def main():
|
|
392 |
key="tts_voice")
|
393 |
|
394 |
if __name__ == "__main__":
|
395 |
-
main()
|
|
|
37 |
if 'arxiv_last_query' not in st.session_state:
|
38 |
st.session_state['arxiv_last_query'] = ""
|
39 |
|
40 |
+
def fetch_dataset_info(dataset_id):
|
41 |
+
"""Fetch dataset information including all available configs and splits"""
|
42 |
+
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
43 |
+
try:
|
44 |
+
response = requests.get(info_url, timeout=30)
|
45 |
+
if response.status_code == 200:
|
46 |
+
return response.json()
|
47 |
+
except Exception as e:
|
48 |
+
st.warning(f"Error fetching dataset info: {e}")
|
49 |
+
return None
|
50 |
+
|
51 |
+
def fetch_dataset_rows(dataset_id, config="default", split="train", max_rows=100):
|
52 |
+
"""Fetch rows from a specific config and split of a dataset"""
|
53 |
+
url = f"https://datasets-server.huggingface.co/first-rows?dataset={dataset_id}&config={config}&split={split}"
|
54 |
+
try:
|
55 |
+
response = requests.get(url, timeout=30)
|
56 |
+
if response.status_code == 200:
|
57 |
+
data = response.json()
|
58 |
+
if 'rows' in data:
|
59 |
+
processed_rows = []
|
60 |
+
for row_data in data['rows']:
|
61 |
+
row = row_data.get('row', row_data)
|
62 |
+
# Process embeddings if present
|
63 |
+
for key in row:
|
64 |
+
if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
|
65 |
+
if isinstance(row[key], str):
|
66 |
+
try:
|
67 |
+
row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
|
68 |
+
except:
|
69 |
+
continue
|
70 |
+
row['_config'] = config
|
71 |
+
row['_split'] = split
|
72 |
+
processed_rows.append(row)
|
73 |
+
return processed_rows
|
74 |
+
except Exception as e:
|
75 |
+
st.warning(f"Error fetching rows for {config}/{split}: {e}")
|
76 |
+
return []
|
77 |
+
|
78 |
+
def search_dataset(dataset_id, search_text, include_configs=None, include_splits=None):
|
79 |
+
"""
|
80 |
+
Search across all configurations and splits of a dataset
|
81 |
+
|
82 |
+
Args:
|
83 |
+
dataset_id (str): The Hugging Face dataset ID
|
84 |
+
search_text (str): Text to search for in descriptions and queries
|
85 |
+
include_configs (list): List of specific configs to search, or None for all
|
86 |
+
include_splits (list): List of specific splits to search, or None for all
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
tuple: (DataFrame of results, list of available configs, list of available splits)
|
90 |
+
"""
|
91 |
+
# Get dataset info
|
92 |
+
dataset_info = fetch_dataset_info(dataset_id)
|
93 |
+
if not dataset_info:
|
94 |
+
return pd.DataFrame(), [], []
|
95 |
+
|
96 |
+
# Get available configs and splits
|
97 |
+
configs = include_configs if include_configs else dataset_info.get('config_names', ['default'])
|
98 |
+
all_rows = []
|
99 |
+
available_splits = set()
|
100 |
+
|
101 |
+
# Search across configs and splits
|
102 |
+
for config in configs:
|
103 |
+
try:
|
104 |
+
# First fetch split info for this config
|
105 |
+
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
|
106 |
+
splits_response = requests.get(splits_url, timeout=30)
|
107 |
+
if splits_response.status_code == 200:
|
108 |
+
splits_data = splits_response.json()
|
109 |
+
splits = [split['split'] for split in splits_data.get('splits', [])]
|
110 |
+
if not splits:
|
111 |
+
splits = ['train'] # fallback to train if no splits found
|
112 |
+
|
113 |
+
# Filter splits if specified
|
114 |
+
if include_splits:
|
115 |
+
splits = [s for s in splits if s in include_splits]
|
116 |
+
|
117 |
+
available_splits.update(splits)
|
118 |
+
|
119 |
+
# Fetch and search rows for each split
|
120 |
+
for split in splits:
|
121 |
+
rows = fetch_dataset_rows(dataset_id, config, split)
|
122 |
+
for row in rows:
|
123 |
+
# Search in all text fields
|
124 |
+
text_content = ' '.join(str(v) for v in row.values() if isinstance(v, (str, int, float)))
|
125 |
+
if search_text.lower() in text_content.lower():
|
126 |
+
row['_matched_text'] = text_content
|
127 |
+
row['_relevance_score'] = text_content.lower().count(search_text.lower())
|
128 |
+
all_rows.append(row)
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
st.warning(f"Error processing config {config}: {e}")
|
132 |
+
continue
|
133 |
+
|
134 |
+
# Convert to DataFrame and sort by relevance
|
135 |
+
if all_rows:
|
136 |
+
df = pd.DataFrame(all_rows)
|
137 |
+
df = df.sort_values('_relevance_score', ascending=False)
|
138 |
+
return df, configs, list(available_splits)
|
139 |
+
|
140 |
+
return pd.DataFrame(), configs, list(available_splits)
|
141 |
+
|
142 |
class VideoSearch:
|
143 |
def __init__(self):
|
144 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
145 |
+
self.dataset_id = "omegalabsinc/omega-multimodal"
|
146 |
self.load_dataset()
|
147 |
|
148 |
def fetch_dataset_rows(self):
|
149 |
+
"""Fetch dataset with enhanced search capabilities"""
|
150 |
try:
|
151 |
+
# First try to get all available data
|
152 |
+
df, configs, splits = search_dataset(
|
153 |
+
self.dataset_id,
|
154 |
+
"", # empty search text to get all data
|
155 |
+
include_configs=None, # all configs
|
156 |
+
include_splits=None # all splits
|
157 |
+
)
|
158 |
+
|
159 |
+
if not df.empty:
|
160 |
+
st.session_state['search_columns'] = [col for col in df.columns
|
161 |
+
if col not in ['video_embed', 'description_embed', 'audio_embed']
|
162 |
+
and not col.startswith('_')]
|
163 |
+
return df
|
164 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
return self.load_example_data()
|
166 |
+
|
167 |
+
except Exception as e:
|
168 |
+
st.warning(f"Error loading dataset: {e}")
|
169 |
return self.load_example_data()
|
170 |
|
171 |
+
def load_example_data(self):
|
172 |
+
"""Load example data as fallback"""
|
173 |
+
example_data = [
|
174 |
+
{
|
175 |
+
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
|
176 |
+
"youtube_id": "IO-vwtyicn4",
|
177 |
+
"description": "This video shows a close-up of an ancient text carved into a surface.",
|
178 |
+
"views": 45489,
|
179 |
+
"start_time": 1452,
|
180 |
+
"end_time": 1458,
|
181 |
+
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
|
182 |
+
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
|
183 |
+
}
|
184 |
+
]
|
185 |
+
return pd.DataFrame(example_data)
|
186 |
+
|
187 |
def prepare_features(self):
|
188 |
"""Prepare embeddings with adaptive field detection"""
|
189 |
try:
|
|
|
224 |
num_rows = len(self.dataset)
|
225 |
self.video_embeds = np.random.randn(num_rows, 384)
|
226 |
self.text_embeds = np.random.randn(num_rows, 384)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
def load_dataset(self):
|
229 |
self.dataset = self.fetch_dataset_rows()
|
|
|
272 |
return None
|
273 |
|
274 |
def transcribe_audio(audio_path):
|
275 |
+
"""Placeholder for ASR transcription"""
|
|
|
|
|
276 |
return "ASR not implemented. Integrate a local model or another service here."
|
277 |
|
278 |
def show_file_manager():
|
|
|
311 |
def arxiv_search(query, max_results=5):
|
312 |
"""Perform a simple Arxiv search using their API and return top results."""
|
313 |
base_url = "http://export.arxiv.org/api/query?"
|
|
|
314 |
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
|
315 |
r = requests.get(search_url)
|
316 |
if r.status_code == 200:
|
317 |
root = ET.fromstring(r.text)
|
|
|
318 |
ns = {'atom': 'http://www.w3.org/2005/Atom'}
|
319 |
entries = root.findall('atom:entry', ns)
|
320 |
results = []
|
|
|
342 |
if link:
|
343 |
st.markdown(f"[View Paper]({link})")
|
344 |
|
|
|
345 |
if vocal_summary:
|
346 |
spoken_text = f"Here are some Arxiv results for {q}. "
|
347 |
if titles_summary:
|
|
|
371 |
search = VideoSearch()
|
372 |
|
373 |
# Create tabs
|
374 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files", "π Advanced Search"])
|
375 |
|
376 |
# ---- Tab 1: Video Search ----
|
377 |
with tab1:
|
|
|
425 |
# ---- Tab 2: Voice Input ----
|
426 |
with tab2:
|
427 |
st.subheader("Voice Input")
|
|
|
428 |
st.write("ποΈ Record your voice:")
|
429 |
audio_bytes = audio_recorder()
|
430 |
if audio_bytes:
|
|
|
465 |
with tab4:
|
466 |
show_file_manager()
|
467 |
|
468 |
+
# ---- Tab 5: Advanced Dataset Search ----
|
469 |
+
with tab5:
|
470 |
+
st.subheader("Advanced Dataset Search")
|
471 |
+
|
472 |
+
# Dataset input
|
473 |
+
dataset_id = st.text_input("Dataset ID:", value="omegalabsinc/omega-multimodal")
|
474 |
+
|
475 |
+
# Search configuration
|
476 |
+
col1, col2 = st.columns([2, 1])
|
477 |
+
with col1:
|
478 |
+
search_text = st.text_input("Search text:",
|
479 |
+
placeholder="Enter text to search across all fields")
|
480 |
+
|
481 |
+
# Get available configs and splits
|
482 |
+
if dataset_id:
|
483 |
+
dataset_info = fetch_dataset_info(dataset_id)
|
484 |
+
if dataset_info:
|
485 |
+
configs = dataset_info.get('config_names', ['default'])
|
486 |
+
with col2:
|
487 |
+
selected_configs = st.multiselect(
|
488 |
+
"Configurations:",
|
489 |
+
options=configs,
|
490 |
+
default=['default'] if 'default' in configs else None
|
491 |
+
)
|
492 |
+
|
493 |
+
# Fetch available splits
|
494 |
+
if selected_configs:
|
495 |
+
all_splits = set()
|
496 |
+
for config in selected_configs:
|
497 |
+
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
|
498 |
+
try:
|
499 |
+
response = requests.get(splits_url, timeout=30)
|
500 |
+
if response.status_code == 200:
|
501 |
+
splits_data = response.json()
|
502 |
+
splits = [split['split'] for split in splits_data.get('splits', [])]
|
503 |
+
all_splits.update(splits)
|
504 |
+
except Exception as e:
|
505 |
+
st.warning(f"Error fetching splits for {config}: {e}")
|
506 |
+
|
507 |
+
selected_splits = st.multiselect(
|
508 |
+
"Splits:",
|
509 |
+
options=list(all_splits),
|
510 |
+
default=['train'] if 'train' in all_splits else None
|
511 |
+
)
|
512 |
+
|
513 |
+
if st.button("π Search Dataset"):
|
514 |
+
with st.spinner("Searching dataset..."):
|
515 |
+
results_df, _, _ = search_dataset(
|
516 |
+
dataset_id,
|
517 |
+
search_text,
|
518 |
+
include_configs=selected_configs,
|
519 |
+
include_splits=selected_splits
|
520 |
+
)
|
521 |
+
|
522 |
+
if not results_df.empty:
|
523 |
+
st.write(f"Found {len(results_df)} results")
|
524 |
+
|
525 |
+
# Display results in expandable sections
|
526 |
+
for idx, row in results_df.iterrows():
|
527 |
+
with st.expander(
|
528 |
+
f"Result {idx+1} (Config: {row['_config']}, Split: {row['_split']}, Score: {row['_relevance_score']})"
|
529 |
+
):
|
530 |
+
# Display all fields except internal ones
|
531 |
+
for col in row.index:
|
532 |
+
if not col.startswith('_') and not any(
|
533 |
+
term in col.lower()
|
534 |
+
for term in ['embed', 'vector', 'encoding']
|
535 |
+
):
|
536 |
+
st.write(f"**{col}:** {row[col]}")
|
537 |
+
|
538 |
+
# Add buttons for audio/video if available
|
539 |
+
if 'youtube_id' in row:
|
540 |
+
st.video(
|
541 |
+
f"https://youtube.com/watch?v={row['youtube_id']}&t={row.get('start_time', 0)}"
|
542 |
+
)
|
543 |
+
else:
|
544 |
+
st.warning("No results found.")
|
545 |
+
else:
|
546 |
+
st.error("Unable to fetch dataset information.")
|
547 |
+
|
548 |
# Sidebar
|
549 |
with st.sidebar:
|
550 |
st.subheader("βοΈ Settings & History")
|
|
|
564 |
key="tts_voice")
|
565 |
|
566 |
if __name__ == "__main__":
|
567 |
+
main()
|