File size: 10,930 Bytes
67c01ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afbfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67c01ec
6afbfac
 
67c01ec
6afbfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67c01ec
6afbfac
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import requests
from datetime import datetime

# Initialize session state variables
if 'search_history' not in st.session_state:
    st.session_state['search_history'] = []
if 'search_columns' not in st.session_state:
    st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
    st.session_state['initial_search_done'] = False
if 'hf_token' not in st.session_state:
    st.session_state['hf_token'] = None

def fetch_dataset_info_auth(dataset_id, hf_token):
    """Fetch dataset information with authentication"""
    info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
    headers = {"Authorization": f"Bearer {hf_token}"}
    try:
        response = requests.get(info_url, headers=headers, timeout=30)
        if response.status_code == 200:
            return response.json()
    except Exception as e:
        st.warning(f"Error fetching dataset info: {e}")
    return None

def fetch_dataset_splits_auth(dataset_id, hf_token):
    """Fetch available splits for the dataset"""
    splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}"
    headers = {"Authorization": f"Bearer {hf_token}"}
    try:
        response = requests.get(splits_url, headers=headers, timeout=30)
        if response.status_code == 200:
            return response.json().get('splits', [])
    except Exception as e:
        st.warning(f"Error fetching splits: {e}")
    return []

def fetch_parquet_urls_auth(dataset_id, config, split, hf_token):
    """Fetch Parquet file URLs for a specific split"""
    parquet_url = f"https://huggingface.co/api/datasets/{dataset_id}/parquet/{config}/{split}"
    headers = {"Authorization": f"Bearer {hf_token}"}
    try:
        response = requests.get(parquet_url, headers=headers, timeout=30)
        if response.status_code == 200:
            return response.json()
    except Exception as e:
        st.warning(f"Error fetching parquet URLs: {e}")
    return []

def fetch_rows_auth(dataset_id, config, split, offset, length, hf_token):
    """Fetch rows with authentication"""
    url = f"https://datasets-server.huggingface.co/rows?dataset={dataset_id}&config={config}&split={split}&offset={offset}&length={length}"
    headers = {"Authorization": f"Bearer {hf_token}"}
    try:
        response = requests.get(url, headers=headers, timeout=30)
        if response.status_code == 200:
            return response.json()
    except Exception as e:
        st.warning(f"Error fetching rows: {e}")
    return None

class ParquetVideoSearch:
    def __init__(self, hf_token):
        self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
        self.dataset_id = "tomg-group-umd/cinepile"
        self.config = "v2"
        self.hf_token = hf_token
        self.load_dataset()
        
    def load_dataset(self):
        """Load initial dataset sample"""
        try:
            rows_data = fetch_rows_auth(
                self.dataset_id,
                self.config,
                "train",
                0,
                100,
                self.hf_token
            )
            
            if rows_data and 'rows' in rows_data:
                processed_rows = []
                for row_data in rows_data['rows']:
                    row = row_data.get('row', row_data)
                    processed_rows.append(row)
                
                self.dataset = pd.DataFrame(processed_rows)
                st.session_state['search_columns'] = [col for col in self.dataset.columns 
                    if not any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
            else:
                self.dataset = self.load_example_data()
                
        except Exception as e:
            st.warning(f"Error loading dataset: {e}")
            self.dataset = self.load_example_data()
        
        self.prepare_features()

    def load_example_data(self):
        """Load example data as fallback"""
        return pd.DataFrame([{
            "video_id": "example",
            "title": "Example Video",
            "description": "Example video content",
            "duration": 120,
            "start_time": 0,
            "end_time": 120
        }])

    def prepare_features(self):
        """Prepare text features for search"""
        try:
            # Combine relevant text fields for search
            text_fields = ['title', 'description'] if 'title' in self.dataset.columns else ['description']
            combined_text = self.dataset[text_fields].fillna('').agg(' '.join, axis=1)
            self.text_embeds = self.text_model.encode(combined_text.tolist())
            
        except Exception as e:
            st.warning(f"Error preparing features: {e}")
            self.text_embeds = np.random.randn(len(self.dataset), 384)

    def search(self, query, column=None, top_k=20):
        """Search using text embeddings and optional column filtering"""
        query_embedding = self.text_model.encode([query])[0]
        similarities = cosine_similarity([query_embedding], self.text_embeds)[0]
        
        # Column filtering
        if column and column in self.dataset.columns and column != "All Fields":
            mask = self.dataset[column].astype(str).str.contains(query, case=False)
            similarities[~mask] *= 0.5
        
        top_k = min(top_k, len(similarities))
        top_indices = np.argsort(similarities)[-top_k:][::-1]
        
        results = []
        for idx in top_indices:
            result = {
                'relevance_score': float(similarities[idx]),
                **self.dataset.iloc[idx].to_dict()
            }
            results.append(result)
        
        return results

def render_video_result(result):
    """Render a video result with enhanced display"""
    col1, col2 = st.columns([2, 1])
    
    with col1:
        if 'title' in result:
            st.markdown(f"**Title:** {result['title']}")
        st.markdown("**Description:**")
        st.write(result.get('description', 'No description available'))
        
        # Show timing information
        start_time = result.get('start_time', 0)
        end_time = result.get('end_time', result.get('duration', 0))
        st.markdown(f"**Time Range:** {start_time}s - {end_time}s")
        
        # Show additional metadata
        for key, value in result.items():
            if key not in ['title', 'description', 'start_time', 'end_time', 'duration', 
                          'relevance_score', 'video_id', '_config', '_split']:
                st.markdown(f"**{key.replace('_', ' ').title()}:** {value}")
    
    with col2:
        st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
        
        # Display video if URL is available
        video_url = None
        if 'video_url' in result:
            video_url = result['video_url']
        elif 'youtube_id' in result:
            video_url = f"https://youtube.com/watch?v={result['youtube_id']}&t={start_time}"
            
        if video_url:
            st.video(video_url)

def main():
    st.title("πŸŽ₯ Video Dataset Search")
    
    # Get HF token from secrets or user input
    if not st.session_state['hf_token']:
        st.session_state['hf_token'] = st.secrets.get("HF_TOKEN", None)
    
    if not st.session_state['hf_token']:
        hf_token = st.text_input("Enter your Hugging Face API token:", type="password")
        if hf_token:
            st.session_state['hf_token'] = hf_token
    
    if not st.session_state.get('hf_token'):
        st.warning("Please provide a Hugging Face API token to access the dataset.")
        return
    
    # Initialize search class
    search = ParquetVideoSearch(st.session_state['hf_token'])
    
    # Create tabs
    tab1, tab2 = st.tabs(["πŸ” Video Search", "πŸ“Š Dataset Info"])
    
    # ---- Tab 1: Video Search ----
    with tab1:
        st.subheader("Search Videos")
        col1, col2 = st.columns([3, 1])
        
        with col1:
            query = st.text_input("Enter your search query:", 
                                value="" if st.session_state['initial_search_done'] else "")
        with col2:
            search_column = st.selectbox("Search in field:", 
                                       ["All Fields"] + st.session_state['search_columns'])
        
        col3, col4 = st.columns(2)
        with col3:
            num_results = st.slider("Number of results:", 1, 100, 20)
        with col4:
            search_button = st.button("πŸ” Search")
        
        if search_button and query:
            st.session_state['initial_search_done'] = True
            selected_column = None if search_column == "All Fields" else search_column
            
            with st.spinner("Searching..."):
                results = search.search(query, selected_column, num_results)
            
            st.session_state['search_history'].append({
                'query': query,
                'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                'results': results[:5]
            })
            
            for i, result in enumerate(results, 1):
                with st.expander(
                    f"Result {i}: {result.get('title', result.get('description', 'No title'))[:100]}...", 
                    expanded=(i==1)
                ):
                    render_video_result(result)
    
    # ---- Tab 2: Dataset Info ----
    with tab2:
        st.subheader("Dataset Information")
        
        # Show available splits
        splits = fetch_dataset_splits_auth(search.dataset_id, st.session_state['hf_token'])
        if splits:
            st.write("### Available Splits")
            for split in splits:
                st.write(f"- {split['split']}: {split.get('num_rows', 'unknown')} rows")
        
        # Show dataset statistics
        st.write("### Dataset Statistics")
        st.write(f"- Loaded rows: {len(search.dataset)}")
        st.write(f"- Available columns: {', '.join(search.dataset.columns)}")
        
        # Show sample data
        st.write("### Sample Data")
        st.dataframe(search.dataset.head())

    # Sidebar
    with st.sidebar:
        st.subheader("βš™οΈ Search History")
        if st.button("πŸ—‘οΈ Clear History"):
            st.session_state['search_history'] = []
            st.experimental_rerun()
        
        st.markdown("### Recent Searches")
        for entry in reversed(st.session_state['search_history'][-5:]):
            with st.expander(f"{entry['timestamp']}: {entry['query']}"):
                for i, result in enumerate(entry['results'], 1):
                    st.write(f"{i}. {result.get('title', result.get('description', 'No title'))[:100]}...")

if __name__ == "__main__":
    main()