Spaces:
Sleeping
Sleeping
File size: 10,930 Bytes
67c01ec 6afbfac 67c01ec 6afbfac 67c01ec 6afbfac 67c01ec 6afbfac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import requests
from datetime import datetime
# Initialize session state variables
if 'search_history' not in st.session_state:
st.session_state['search_history'] = []
if 'search_columns' not in st.session_state:
st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
st.session_state['initial_search_done'] = False
if 'hf_token' not in st.session_state:
st.session_state['hf_token'] = None
def fetch_dataset_info_auth(dataset_id, hf_token):
"""Fetch dataset information with authentication"""
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.get(info_url, headers=headers, timeout=30)
if response.status_code == 200:
return response.json()
except Exception as e:
st.warning(f"Error fetching dataset info: {e}")
return None
def fetch_dataset_splits_auth(dataset_id, hf_token):
"""Fetch available splits for the dataset"""
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.get(splits_url, headers=headers, timeout=30)
if response.status_code == 200:
return response.json().get('splits', [])
except Exception as e:
st.warning(f"Error fetching splits: {e}")
return []
def fetch_parquet_urls_auth(dataset_id, config, split, hf_token):
"""Fetch Parquet file URLs for a specific split"""
parquet_url = f"https://huggingface.co/api/datasets/{dataset_id}/parquet/{config}/{split}"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.get(parquet_url, headers=headers, timeout=30)
if response.status_code == 200:
return response.json()
except Exception as e:
st.warning(f"Error fetching parquet URLs: {e}")
return []
def fetch_rows_auth(dataset_id, config, split, offset, length, hf_token):
"""Fetch rows with authentication"""
url = f"https://datasets-server.huggingface.co/rows?dataset={dataset_id}&config={config}&split={split}&offset={offset}&length={length}"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.get(url, headers=headers, timeout=30)
if response.status_code == 200:
return response.json()
except Exception as e:
st.warning(f"Error fetching rows: {e}")
return None
class ParquetVideoSearch:
def __init__(self, hf_token):
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
self.dataset_id = "tomg-group-umd/cinepile"
self.config = "v2"
self.hf_token = hf_token
self.load_dataset()
def load_dataset(self):
"""Load initial dataset sample"""
try:
rows_data = fetch_rows_auth(
self.dataset_id,
self.config,
"train",
0,
100,
self.hf_token
)
if rows_data and 'rows' in rows_data:
processed_rows = []
for row_data in rows_data['rows']:
row = row_data.get('row', row_data)
processed_rows.append(row)
self.dataset = pd.DataFrame(processed_rows)
st.session_state['search_columns'] = [col for col in self.dataset.columns
if not any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
else:
self.dataset = self.load_example_data()
except Exception as e:
st.warning(f"Error loading dataset: {e}")
self.dataset = self.load_example_data()
self.prepare_features()
def load_example_data(self):
"""Load example data as fallback"""
return pd.DataFrame([{
"video_id": "example",
"title": "Example Video",
"description": "Example video content",
"duration": 120,
"start_time": 0,
"end_time": 120
}])
def prepare_features(self):
"""Prepare text features for search"""
try:
# Combine relevant text fields for search
text_fields = ['title', 'description'] if 'title' in self.dataset.columns else ['description']
combined_text = self.dataset[text_fields].fillna('').agg(' '.join, axis=1)
self.text_embeds = self.text_model.encode(combined_text.tolist())
except Exception as e:
st.warning(f"Error preparing features: {e}")
self.text_embeds = np.random.randn(len(self.dataset), 384)
def search(self, query, column=None, top_k=20):
"""Search using text embeddings and optional column filtering"""
query_embedding = self.text_model.encode([query])[0]
similarities = cosine_similarity([query_embedding], self.text_embeds)[0]
# Column filtering
if column and column in self.dataset.columns and column != "All Fields":
mask = self.dataset[column].astype(str).str.contains(query, case=False)
similarities[~mask] *= 0.5
top_k = min(top_k, len(similarities))
top_indices = np.argsort(similarities)[-top_k:][::-1]
results = []
for idx in top_indices:
result = {
'relevance_score': float(similarities[idx]),
**self.dataset.iloc[idx].to_dict()
}
results.append(result)
return results
def render_video_result(result):
"""Render a video result with enhanced display"""
col1, col2 = st.columns([2, 1])
with col1:
if 'title' in result:
st.markdown(f"**Title:** {result['title']}")
st.markdown("**Description:**")
st.write(result.get('description', 'No description available'))
# Show timing information
start_time = result.get('start_time', 0)
end_time = result.get('end_time', result.get('duration', 0))
st.markdown(f"**Time Range:** {start_time}s - {end_time}s")
# Show additional metadata
for key, value in result.items():
if key not in ['title', 'description', 'start_time', 'end_time', 'duration',
'relevance_score', 'video_id', '_config', '_split']:
st.markdown(f"**{key.replace('_', ' ').title()}:** {value}")
with col2:
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
# Display video if URL is available
video_url = None
if 'video_url' in result:
video_url = result['video_url']
elif 'youtube_id' in result:
video_url = f"https://youtube.com/watch?v={result['youtube_id']}&t={start_time}"
if video_url:
st.video(video_url)
def main():
st.title("π₯ Video Dataset Search")
# Get HF token from secrets or user input
if not st.session_state['hf_token']:
st.session_state['hf_token'] = st.secrets.get("HF_TOKEN", None)
if not st.session_state['hf_token']:
hf_token = st.text_input("Enter your Hugging Face API token:", type="password")
if hf_token:
st.session_state['hf_token'] = hf_token
if not st.session_state.get('hf_token'):
st.warning("Please provide a Hugging Face API token to access the dataset.")
return
# Initialize search class
search = ParquetVideoSearch(st.session_state['hf_token'])
# Create tabs
tab1, tab2 = st.tabs(["π Video Search", "π Dataset Info"])
# ---- Tab 1: Video Search ----
with tab1:
st.subheader("Search Videos")
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Enter your search query:",
value="" if st.session_state['initial_search_done'] else "")
with col2:
search_column = st.selectbox("Search in field:",
["All Fields"] + st.session_state['search_columns'])
col3, col4 = st.columns(2)
with col3:
num_results = st.slider("Number of results:", 1, 100, 20)
with col4:
search_button = st.button("π Search")
if search_button and query:
st.session_state['initial_search_done'] = True
selected_column = None if search_column == "All Fields" else search_column
with st.spinner("Searching..."):
results = search.search(query, selected_column, num_results)
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results[:5]
})
for i, result in enumerate(results, 1):
with st.expander(
f"Result {i}: {result.get('title', result.get('description', 'No title'))[:100]}...",
expanded=(i==1)
):
render_video_result(result)
# ---- Tab 2: Dataset Info ----
with tab2:
st.subheader("Dataset Information")
# Show available splits
splits = fetch_dataset_splits_auth(search.dataset_id, st.session_state['hf_token'])
if splits:
st.write("### Available Splits")
for split in splits:
st.write(f"- {split['split']}: {split.get('num_rows', 'unknown')} rows")
# Show dataset statistics
st.write("### Dataset Statistics")
st.write(f"- Loaded rows: {len(search.dataset)}")
st.write(f"- Available columns: {', '.join(search.dataset.columns)}")
# Show sample data
st.write("### Sample Data")
st.dataframe(search.dataset.head())
# Sidebar
with st.sidebar:
st.subheader("βοΈ Search History")
if st.button("ποΈ Clear History"):
st.session_state['search_history'] = []
st.experimental_rerun()
st.markdown("### Recent Searches")
for entry in reversed(st.session_state['search_history'][-5:]):
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
for i, result in enumerate(entry['results'], 1):
st.write(f"{i}. {result.get('title', result.get('description', 'No title'))[:100]}...")
if __name__ == "__main__":
main() |