File size: 4,538 Bytes
1f20248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34dc422
 
1f20248
 
4e64785
85d83b1
b311b01
4905f9c
b311b01
 
 
 
1f20248
 
 
 
 
 
 
0bb4151
e73e60a
0bb4151
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
norm_layer = nn.InstanceNorm2d

class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()
        conv_block = [  nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features),
                        nn.ReLU(inplace=True),
                        nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features)
                        ]
        self.conv_block = nn.Sequential(*conv_block)
    def forward(self, x):
        return x + self.conv_block(x)


class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()
        model0 = [   nn.ReflectionPad2d(3),
                    nn.Conv2d(input_nc, 64, 7),
                    norm_layer(64),
                    nn.ReLU(inplace=True) ]
        self.model0 = nn.Sequential(*model0)
        model1 = []
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model1 += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features*2
        self.model1 = nn.Sequential(*model1)
        model2 = []
        for _ in range(n_residual_blocks):
            model2 += [ResidualBlock(in_features)]
        self.model2 = nn.Sequential(*model2)
        model3 = []
        out_features = in_features//2
        for _ in range(2):
            model3 += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features//2
        self.model3 = nn.Sequential(*model3)
        model4 = [  nn.ReflectionPad2d(3),
                        nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]
        self.model4 = nn.Sequential(*model4)

    def forward(self, x, cond=None):
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)
        return out

model1 = Generator(3, 1, 3)
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
model1.eval()

model2 = Generator(3, 1, 3)
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu')))
model2.eval()

def predict(input_img, ver):
    input_img = Image.open(input_img)
    transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
    input_img = transform(input_img)
    input_img = torch.unsqueeze(input_img, 0)

    drawing = 0
    with torch.no_grad():
        if ver == 'Simple Lines':
            drawing = model2(input_img)[0].detach()
        else:
            drawing = model1(input_img)[0].detach()
    
    drawing = transforms.ToPILImage()(drawing)
    return drawing

title="Art Style Line Drawings - Complex and Simple Portraits and Landscapes"
description="Art Style Line Drawings  ๐Ÿฆ€๐Ÿฆ๐Ÿฆ‚๐Ÿฆƒ๐Ÿฆ„๐Ÿฆ…๐Ÿฆ†๐Ÿฆ‡๐Ÿฆˆ๐Ÿฆ‰๐ŸฆŠ๐Ÿฆ‹๐ŸฆŒ๐Ÿฆ๐ŸฆŽ๐Ÿฆ ๐Ÿฆ๐Ÿฆ‘๐Ÿฆ’๐Ÿฆ“๐Ÿฆ”๐Ÿฆ•๐Ÿฆ–๐Ÿฆ—๐Ÿฆ˜๐Ÿฆ™๐Ÿฆš๐Ÿฆ›๐Ÿฆœ๐Ÿฆ๐Ÿฆž๐ŸฆŸ๐Ÿฆ ๐Ÿฆก๐Ÿฆข๐Ÿฆฃ๐Ÿฆค๐Ÿฆฅ๐Ÿฆฆ๐Ÿฆง๐Ÿฆจ๐Ÿฆฉ๐Ÿฆช๐Ÿฆซ๐Ÿฆฌ๐Ÿฆญ๐Ÿฆฎ"
# article = "<p style='text-align: center'></p>"
examples=[
['QSHYNkOyhArcsgDrSFqq_15.625x.jpg', 'Simple Lines'],
['Xenomporh-art-scale-6_00x-gigapixel.png', 'Simple Lines'],
['Alien Chairs-art-scale-6_00x-gigapixel.png', 'Complex Lines'],
['Brain Coral B-gigapixel-art-scale-6_00x.jpg', 'Simple Lines'],
['Brain Coral-gigapixel-art-scale-6_00x.jpg', 'Complex Lines'],
['Dark Ritual Wisp Loop-art-scale-6_00x-gigapixel.png', 'Simple Lines'],
['Dungeons and Dragons Cartoon-art-scale-6_00x-gigapixel.png', 'Complex Lines'],
['Fantasy Art 2-art-scale-6_00x-gigapixel.png', 'Simple Lines']
]


iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'),
    gr.inputs.Radio(['Complex Lines','Simple Lines'], type="value", default='Simple Lines', label='version')],
    gr.outputs.Image(type="pil"), title=title,description=description,examples=examples)

#iface.launch()
iface.launch()