Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,13 +4,11 @@ import torch.nn as nn
|
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
-
|
8 |
norm_layer = nn.InstanceNorm2d
|
9 |
|
10 |
class ResidualBlock(nn.Module):
|
11 |
def __init__(self, in_features):
|
12 |
super(ResidualBlock, self).__init__()
|
13 |
-
|
14 |
conv_block = [ nn.ReflectionPad2d(1),
|
15 |
nn.Conv2d(in_features, in_features, 3),
|
16 |
norm_layer(in_features),
|
@@ -19,9 +17,7 @@ class ResidualBlock(nn.Module):
|
|
19 |
nn.Conv2d(in_features, in_features, 3),
|
20 |
norm_layer(in_features)
|
21 |
]
|
22 |
-
|
23 |
self.conv_block = nn.Sequential(*conv_block)
|
24 |
-
|
25 |
def forward(self, x):
|
26 |
return x + self.conv_block(x)
|
27 |
|
@@ -29,15 +25,11 @@ class ResidualBlock(nn.Module):
|
|
29 |
class Generator(nn.Module):
|
30 |
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
31 |
super(Generator, self).__init__()
|
32 |
-
|
33 |
-
# Initial convolution block
|
34 |
model0 = [ nn.ReflectionPad2d(3),
|
35 |
nn.Conv2d(input_nc, 64, 7),
|
36 |
norm_layer(64),
|
37 |
nn.ReLU(inplace=True) ]
|
38 |
self.model0 = nn.Sequential(*model0)
|
39 |
-
|
40 |
-
# Downsampling
|
41 |
model1 = []
|
42 |
in_features = 64
|
43 |
out_features = in_features*2
|
@@ -48,14 +40,10 @@ class Generator(nn.Module):
|
|
48 |
in_features = out_features
|
49 |
out_features = in_features*2
|
50 |
self.model1 = nn.Sequential(*model1)
|
51 |
-
|
52 |
model2 = []
|
53 |
-
# Residual blocks
|
54 |
for _ in range(n_residual_blocks):
|
55 |
model2 += [ResidualBlock(in_features)]
|
56 |
self.model2 = nn.Sequential(*model2)
|
57 |
-
|
58 |
-
# Upsampling
|
59 |
model3 = []
|
60 |
out_features = in_features//2
|
61 |
for _ in range(2):
|
@@ -65,13 +53,10 @@ class Generator(nn.Module):
|
|
65 |
in_features = out_features
|
66 |
out_features = in_features//2
|
67 |
self.model3 = nn.Sequential(*model3)
|
68 |
-
|
69 |
-
# Output layer
|
70 |
model4 = [ nn.ReflectionPad2d(3),
|
71 |
nn.Conv2d(64, output_nc, 7)]
|
72 |
if sigmoid:
|
73 |
model4 += [nn.Sigmoid()]
|
74 |
-
|
75 |
self.model4 = nn.Sequential(*model4)
|
76 |
|
77 |
def forward(self, x, cond=None):
|
@@ -80,7 +65,6 @@ class Generator(nn.Module):
|
|
80 |
out = self.model2(out)
|
81 |
out = self.model3(out)
|
82 |
out = self.model4(out)
|
83 |
-
|
84 |
return out
|
85 |
|
86 |
model1 = Generator(3, 1, 3)
|
@@ -107,8 +91,8 @@ def predict(input_img, ver):
|
|
107 |
drawing = transforms.ToPILImage()(drawing)
|
108 |
return drawing
|
109 |
|
110 |
-
title="
|
111 |
-
description="
|
112 |
# article = "<p style='text-align: center'></p>"
|
113 |
examples=[
|
114 |
['Achilles-art-scale-6_00x-gigapixel.png', 'Simple Lines'],
|
|
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
|
|
7 |
norm_layer = nn.InstanceNorm2d
|
8 |
|
9 |
class ResidualBlock(nn.Module):
|
10 |
def __init__(self, in_features):
|
11 |
super(ResidualBlock, self).__init__()
|
|
|
12 |
conv_block = [ nn.ReflectionPad2d(1),
|
13 |
nn.Conv2d(in_features, in_features, 3),
|
14 |
norm_layer(in_features),
|
|
|
17 |
nn.Conv2d(in_features, in_features, 3),
|
18 |
norm_layer(in_features)
|
19 |
]
|
|
|
20 |
self.conv_block = nn.Sequential(*conv_block)
|
|
|
21 |
def forward(self, x):
|
22 |
return x + self.conv_block(x)
|
23 |
|
|
|
25 |
class Generator(nn.Module):
|
26 |
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
27 |
super(Generator, self).__init__()
|
|
|
|
|
28 |
model0 = [ nn.ReflectionPad2d(3),
|
29 |
nn.Conv2d(input_nc, 64, 7),
|
30 |
norm_layer(64),
|
31 |
nn.ReLU(inplace=True) ]
|
32 |
self.model0 = nn.Sequential(*model0)
|
|
|
|
|
33 |
model1 = []
|
34 |
in_features = 64
|
35 |
out_features = in_features*2
|
|
|
40 |
in_features = out_features
|
41 |
out_features = in_features*2
|
42 |
self.model1 = nn.Sequential(*model1)
|
|
|
43 |
model2 = []
|
|
|
44 |
for _ in range(n_residual_blocks):
|
45 |
model2 += [ResidualBlock(in_features)]
|
46 |
self.model2 = nn.Sequential(*model2)
|
|
|
|
|
47 |
model3 = []
|
48 |
out_features = in_features//2
|
49 |
for _ in range(2):
|
|
|
53 |
in_features = out_features
|
54 |
out_features = in_features//2
|
55 |
self.model3 = nn.Sequential(*model3)
|
|
|
|
|
56 |
model4 = [ nn.ReflectionPad2d(3),
|
57 |
nn.Conv2d(64, output_nc, 7)]
|
58 |
if sigmoid:
|
59 |
model4 += [nn.Sigmoid()]
|
|
|
60 |
self.model4 = nn.Sequential(*model4)
|
61 |
|
62 |
def forward(self, x, cond=None):
|
|
|
65 |
out = self.model2(out)
|
66 |
out = self.model3(out)
|
67 |
out = self.model4(out)
|
|
|
68 |
return out
|
69 |
|
70 |
model1 = Generator(3, 1, 3)
|
|
|
91 |
drawing = transforms.ToPILImage()(drawing)
|
92 |
return drawing
|
93 |
|
94 |
+
title="Art Style Line Drawings - Complex and Simple Portraits and Landscapes"
|
95 |
+
description="Art Style Line Drawings ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ
๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ ๐ฆก๐ฆข๐ฆฃ๐ฆค๐ฆฅ๐ฆฆ๐ฆง๐ฆจ๐ฆฉ๐ฆช๐ฆซ๐ฆฌ๐ฆญ๐ฆฎ"
|
96 |
# article = "<p style='text-align: center'></p>"
|
97 |
examples=[
|
98 |
['Achilles-art-scale-6_00x-gigapixel.png', 'Simple Lines'],
|