Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,34 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from ultralytics import YOLO
|
| 3 |
-
import spaces
|
| 4 |
|
| 5 |
# Load pre-trained YOLOv8 model
|
| 6 |
model = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
# Decorate the `process_image` function with `@spaces.GPU`
|
| 9 |
-
@spaces.GPU(duration=60)
|
| 10 |
def process_image(image):
|
| 11 |
try:
|
| 12 |
# Process the image
|
| 13 |
results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
|
| 14 |
-
result = results[0]
|
| 15 |
|
| 16 |
-
# Extract
|
| 17 |
annotated_image = result.plot()
|
|
|
|
|
|
|
| 18 |
detected_areas_labels = "\n".join(
|
| 19 |
-
[f"{box.
|
| 20 |
)
|
| 21 |
|
| 22 |
return annotated_image, detected_areas_labels
|
| 23 |
except Exception as e:
|
| 24 |
return None, f"Error processing image: {e}"
|
| 25 |
|
|
|
|
| 26 |
# Create the Gradio Interface
|
| 27 |
with gr.Blocks() as demo:
|
| 28 |
gr.Markdown("# Document Segmentation Demo (ZeroGPU)")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from ultralytics import YOLO
|
| 3 |
+
import spaces
|
| 4 |
|
| 5 |
# Load pre-trained YOLOv8 model
|
| 6 |
model = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
|
| 7 |
|
| 8 |
+
# Get class names from model
|
| 9 |
+
class_names = model.names
|
| 10 |
+
|
| 11 |
# Decorate the `process_image` function with `@spaces.GPU`
|
| 12 |
+
@spaces.GPU(duration=60)
|
| 13 |
def process_image(image):
|
| 14 |
try:
|
| 15 |
# Process the image
|
| 16 |
results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
|
| 17 |
+
result = results[0] # Get the first result
|
| 18 |
|
| 19 |
+
# Extract annotated image and labels with class names
|
| 20 |
annotated_image = result.plot()
|
| 21 |
+
|
| 22 |
+
# Use cls attribute for labels and get class name from model
|
| 23 |
detected_areas_labels = "\n".join(
|
| 24 |
+
[f"{class_names[int(box.cls)].upper()}: {box.conf:.2f}" for box in result.boxes]
|
| 25 |
)
|
| 26 |
|
| 27 |
return annotated_image, detected_areas_labels
|
| 28 |
except Exception as e:
|
| 29 |
return None, f"Error processing image: {e}"
|
| 30 |
|
| 31 |
+
|
| 32 |
# Create the Gradio Interface
|
| 33 |
with gr.Blocks() as demo:
|
| 34 |
gr.Markdown("# Document Segmentation Demo (ZeroGPU)")
|