Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
-
import
|
4 |
|
5 |
-
# Load pre-trained YOLOv8
|
6 |
-
|
7 |
-
# docseg_model2 = YOLO("path/to/your/second/model.pt") # Replace with your second model's path
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
# "Your Second Model": docseg_model2 # Uncomment and add more as needed
|
13 |
-
}
|
14 |
-
|
15 |
-
def process_image(image, model_name):
|
16 |
try:
|
17 |
-
# Select the model
|
18 |
-
model = MODELS[model_name]
|
19 |
-
|
20 |
# Process the image
|
21 |
results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
|
22 |
result = results[0]
|
23 |
-
|
24 |
# Extract the annotated image and the labels/confidence scores
|
25 |
annotated_image = result.plot()
|
26 |
detected_areas_labels = "\n".join(
|
@@ -30,17 +22,12 @@ def process_image(image, model_name):
|
|
30 |
return annotated_image, detected_areas_labels
|
31 |
except Exception as e:
|
32 |
return None, f"Error processing image: {e}"
|
33 |
-
|
34 |
-
|
35 |
|
36 |
# Create the Gradio Interface
|
37 |
with gr.Blocks() as demo:
|
38 |
-
gr.Markdown("# Document Segmentation Demo")
|
39 |
-
|
40 |
# Input Components
|
41 |
-
|
42 |
-
input_image = gr.Image(type="pil", label="Upload Image")
|
43 |
-
model_dropdown = gr.Dropdown(list(MODELS.keys()), label="Select Model", value=list(MODELS.keys())[0])
|
44 |
|
45 |
# Output Components
|
46 |
output_image = gr.Image(type="pil", label="Annotated Image")
|
@@ -48,7 +35,7 @@ with gr.Blocks() as demo:
|
|
48 |
|
49 |
# Button to trigger inference
|
50 |
btn = gr.Button("Run Document Segmentation")
|
51 |
-
btn.click(fn=process_image, inputs=
|
52 |
|
53 |
# Launch the demo
|
54 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
+
import spaces # Import the `spaces` library
|
4 |
|
5 |
+
# Load pre-trained YOLOv8 model
|
6 |
+
model = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
|
|
|
7 |
|
8 |
+
# Decorate the `process_image` function with `@spaces.GPU`
|
9 |
+
@spaces.GPU(duration=60) # Optional: Set the duration if needed
|
10 |
+
def process_image(image):
|
|
|
|
|
|
|
|
|
11 |
try:
|
|
|
|
|
|
|
12 |
# Process the image
|
13 |
results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
|
14 |
result = results[0]
|
15 |
+
|
16 |
# Extract the annotated image and the labels/confidence scores
|
17 |
annotated_image = result.plot()
|
18 |
detected_areas_labels = "\n".join(
|
|
|
22 |
return annotated_image, detected_areas_labels
|
23 |
except Exception as e:
|
24 |
return None, f"Error processing image: {e}"
|
|
|
|
|
25 |
|
26 |
# Create the Gradio Interface
|
27 |
with gr.Blocks() as demo:
|
28 |
+
gr.Markdown("# Document Segmentation Demo (ZeroGPU)")
|
|
|
29 |
# Input Components
|
30 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
|
|
|
|
31 |
|
32 |
# Output Components
|
33 |
output_image = gr.Image(type="pil", label="Annotated Image")
|
|
|
35 |
|
36 |
# Button to trigger inference
|
37 |
btn = gr.Button("Run Document Segmentation")
|
38 |
+
btn.click(fn=process_image, inputs=input_image, outputs=[output_image, output_text])
|
39 |
|
40 |
# Launch the demo
|
41 |
+
demo.queue(max_size=1).launch() # Queue to handle concurrent requests
|