Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from ultralytics import YOLO | |
| import cv2 | |
| import numpy as np | |
| import os | |
| import requests | |
| import torch | |
| import datetime | |
| import subprocess | |
| CUSTOM_CSS = """ | |
| #output_box textarea { | |
| font-family: IBM Plex Mono, ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; | |
| } | |
| """ | |
| # Ensure the model file is in the correct location | |
| model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
| if not os.path.exists(model_path): | |
| # Download the model file if it doesn't exist | |
| model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
| response = requests.get(model_url) | |
| with open(model_path, "wb") as f: | |
| f.write(response.content) | |
| # Load the document segmentation model | |
| docseg_model = YOLO(model_path) | |
| def process_image(image): | |
| # Convert image to the format YOLO model expects | |
| image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
| results = docseg_model(image) | |
| # Extract annotated image from results | |
| annotated_img = results[0].plot() | |
| annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB) | |
| # Prepare detected areas and labels as text output | |
| detected_areas_labels = "\n".join( | |
| [f"{box.label}: {box.conf:.2f}" for box in results[0].boxes] | |
| ) | |
| return annotated_img, detected_areas_labels | |
| zero = torch.Tensor([0]).cuda() | |
| print(zero.device) # <-- 'cpu' π€ | |
| def run_gpu() -> str: | |
| print(zero.device) # <-- 'cuda:0' π€ | |
| output: str = "" | |
| try: | |
| output = subprocess.check_output(["nvidia-smi"], text=True) | |
| except FileNotFoundError: | |
| output = "nvidia-smi failed" | |
| comment = ( | |
| datetime.datetime.now().replace(microsecond=0).isoformat().replace("T", " ") | |
| ) | |
| return f"# {comment}\n\n{output}" | |
| def run(check: bool) -> str: | |
| if check: | |
| return run_gpu() | |
| else: | |
| comment = ( | |
| datetime.datetime.now().replace(microsecond=0).isoformat().replace("T", " ") | |
| ) | |
| return f"# {comment}\n\nThis is running on CPU\n\nClick on 'Run on GPU' below to move to GPU instantly and run nvidia-smi" | |
| output = gr.Textbox( | |
| label="Command Output", max_lines=32, elem_id="output_box", value=run(False) | |
| ) | |
| with gr.Blocks(css=CUSTOM_CSS) as demo: | |
| gr.Markdown("#### `zero-gpu`: how to run on serverless GPU for free on Spaces π₯") | |
| output.render() | |
| check = gr.Checkbox(label="Run on GPU") | |
| check.change(run, inputs=[check], outputs=output, every=1) | |
| # Define the Gradio interface | |
| with gr.Blocks() as interface: | |
| gr.Markdown("### Document Segmentation using YOLOv8") | |
| input_image = gr.Image(type="pil", label="Input Image") | |
| output_image = gr.Image(type="pil", label="Annotated Image") | |
| output_text = gr.Textbox(label="Detected Areas and Labels") | |
| gr.Button("Run").click( | |
| fn=process_image, | |
| inputs=input_image, | |
| outputs=[output_image, output_text] | |
| ) | |
| demo.queue().launch(show_api=False) | |
| interface.launch() | |
| if __name__ == "__main__": | |
| demo.launch() | |
| interface.launch() | |