import gradio as gr from ultralytics import YOLO import cv2 import numpy as np import os import requests import torch import datetime import subprocess CUSTOM_CSS = """ #output_box textarea { font-family: IBM Plex Mono, ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; } """ # Ensure the model file is in the correct location model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" if not os.path.exists(model_path): # Download the model file if it doesn't exist model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" response = requests.get(model_url) with open(model_path, "wb") as f: f.write(response.content) # Load the document segmentation model docseg_model = YOLO(model_path) def process_image(image): # Convert image to the format YOLO model expects image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) results = docseg_model(image) # Extract annotated image from results annotated_img = results[0].plot() annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB) # Prepare detected areas and labels as text output detected_areas_labels = "\n".join( [f"{box.label}: {box.conf:.2f}" for box in results[0].boxes] ) return annotated_img, detected_areas_labels zero = torch.Tensor([0]).cuda() print(zero.device) # <-- 'cpu' 🤔 @spaces.GPU def run_gpu() -> str: print(zero.device) # <-- 'cuda:0' 🤗 output: str = "" try: output = subprocess.check_output(["nvidia-smi"], text=True) except FileNotFoundError: output = "nvidia-smi failed" comment = ( datetime.datetime.now().replace(microsecond=0).isoformat().replace("T", " ") ) return f"# {comment}\n\n{output}" def run(check: bool) -> str: if check: return run_gpu() else: comment = ( datetime.datetime.now().replace(microsecond=0).isoformat().replace("T", " ") ) return f"# {comment}\n\nThis is running on CPU\n\nClick on 'Run on GPU' below to move to GPU instantly and run nvidia-smi" output = gr.Textbox( label="Command Output", max_lines=32, elem_id="output_box", value=run(False) ) with gr.Blocks(css=CUSTOM_CSS) as demo: gr.Markdown("#### `zero-gpu`: how to run on serverless GPU for free on Spaces 🔥") output.render() check = gr.Checkbox(label="Run on GPU") check.change(run, inputs=[check], outputs=output, every=1) # Define the Gradio interface with gr.Blocks() as interface: gr.Markdown("### Document Segmentation using YOLOv8") input_image = gr.Image(type="pil", label="Input Image") output_image = gr.Image(type="pil", label="Annotated Image") output_text = gr.Textbox(label="Detected Areas and Labels") gr.Button("Run").click( fn=process_image, inputs=input_image, outputs=[output_image, output_text] ) demo.queue().launch(show_api=False) interface.launch() if __name__ == "__main__": demo.launch() interface.launch()