Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import os | |
# Load pre-trained YOLOv8 models | |
docseg_model1 = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt") | |
docseg_model2 = YOLO("path/to/your/second/model.pt") # Replace with your second model's path | |
# Available models | |
MODELS = { | |
"DocLayNet YOLOv8": docseg_model1, | |
# "Your Second Model": docseg_model2 # Uncomment and add more as needed | |
} | |
def process_image(image, model_name): | |
try: | |
# Select the model | |
model = MODELS[model_name] | |
# Process the image | |
results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True) | |
result = results[0] | |
# Extract the annotated image and the labels/confidence scores | |
annotated_image = result.plot() | |
detected_areas_labels = "\n".join( | |
[f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes] | |
) | |
return annotated_image, detected_areas_labels | |
except Exception as e: | |
return None, f"Error processing image: {e}" | |
# Create the Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Document Segmentation Demo") | |
# Input Components | |
with gr.Row(): | |
input_image = gr.Image(type="pil", label="Upload Image") | |
model_dropdown = gr.Dropdown(list(MODELS.keys()), label="Select Model", value=list(MODELS.keys())[0]) | |
# Output Components | |
output_image = gr.Image(type="pil", label="Annotated Image") | |
output_text = gr.Textbox(label="Detected Areas and Labels") | |
# Button to trigger inference | |
btn = gr.Button("Run Document Segmentation") | |
btn.click(fn=process_image, inputs=[input_image, model_dropdown], outputs=[output_image, output_text]) | |
# Launch the demo | |
demo.launch() | |