Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
import os
|
6 |
-
import requests
|
7 |
-
import torch
|
8 |
-
import huggingface_hub
|
9 |
-
from accelerate import Accelerator
|
10 |
-
from huggingface_hub import notebook_login # Added this for HF login
|
11 |
-
from huggingface_hub.utils import HfHubHTTPError # Added this to catch HF login errors
|
12 |
-
# Initialize Hugging Face Hub login
|
13 |
-
notebook_login()
|
14 |
-
# Initialize Accelerator
|
15 |
-
accelerator = Accelerator()
|
16 |
-
|
17 |
-
|
18 |
-
# Load the model file
|
19 |
-
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
20 |
-
if not os.path.exists(model_path):
|
21 |
-
# Download the model file if it doesn't exist
|
22 |
-
model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
23 |
-
try:
|
24 |
-
response = requests.get(model_url)
|
25 |
-
with open(model_path, "wb") as f:
|
26 |
-
f.write(response.content)
|
27 |
-
except HfHubHTTPError as e:
|
28 |
-
if e.response.status_code == 401:
|
29 |
-
print("Authentication error. Please login to Hugging Face Hub.")
|
30 |
-
else:
|
31 |
-
raise e
|
32 |
-
# Load the document segmentation model
|
33 |
-
docseg_model = YOLO(model_path)
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
def process_image(image):
|
39 |
try:
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
# Move image to accelerator
|
44 |
-
image = torch.from_numpy(image).to(accelerator.device)
|
45 |
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
# Extract annotated image
|
50 |
-
|
51 |
-
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
|
52 |
-
|
53 |
-
# Prepare detected areas and labels as text output
|
54 |
detected_areas_labels = "\n".join(
|
55 |
[f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes]
|
56 |
)
|
|
|
|
|
57 |
except Exception as e:
|
58 |
-
return None, f"Error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
#
|
|
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
|
|
|
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load pre-trained YOLOv8 models
|
6 |
+
docseg_model1 = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
|
7 |
+
docseg_model2 = YOLO("path/to/your/second/model.pt") # Replace with your second model's path
|
8 |
|
9 |
+
# Available models
|
10 |
+
MODELS = {
|
11 |
+
"DocLayNet YOLOv8": docseg_model1,
|
12 |
+
# "Your Second Model": docseg_model2 # Uncomment and add more as needed
|
13 |
+
}
|
14 |
|
15 |
+
def process_image(image, model_name):
|
16 |
try:
|
17 |
+
# Select the model
|
18 |
+
model = MODELS[model_name]
|
|
|
|
|
|
|
19 |
|
20 |
+
# Process the image
|
21 |
+
results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
|
22 |
+
result = results[0]
|
23 |
|
24 |
+
# Extract the annotated image and the labels/confidence scores
|
25 |
+
annotated_image = result.plot()
|
|
|
|
|
|
|
26 |
detected_areas_labels = "\n".join(
|
27 |
[f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes]
|
28 |
)
|
29 |
+
|
30 |
+
return annotated_image, detected_areas_labels
|
31 |
except Exception as e:
|
32 |
+
return None, f"Error processing image: {e}"
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
# Create the Gradio Interface
|
37 |
+
with gr.Blocks() as demo:
|
38 |
+
gr.Markdown("# Document Segmentation Demo")
|
39 |
+
|
40 |
+
# Input Components
|
41 |
+
with gr.Row():
|
42 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
43 |
+
model_dropdown = gr.Dropdown(list(MODELS.keys()), label="Select Model", value=list(MODELS.keys())[0])
|
44 |
+
|
45 |
+
# Output Components
|
46 |
+
output_image = gr.Image(type="pil", label="Annotated Image")
|
47 |
+
output_text = gr.Textbox(label="Detected Areas and Labels")
|
48 |
|
49 |
+
# Button to trigger inference
|
50 |
+
btn = gr.Button("Run Document Segmentation")
|
51 |
+
btn.click(fn=process_image, inputs=[input_image, model_dropdown], outputs=[output_image, output_text])
|
52 |
|
53 |
+
# Launch the demo
|
54 |
+
demo.launch()
|