atlury commited on
Commit
6cd21dc
·
verified ·
1 Parent(s): 8f8bd11

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -47
app.py CHANGED
@@ -1,62 +1,54 @@
1
  import gradio as gr
2
  from ultralytics import YOLO
3
- import cv2
4
- import numpy as np
5
  import os
6
- import requests
7
- import torch
8
- import huggingface_hub
9
- from accelerate import Accelerator
10
- from huggingface_hub import notebook_login # Added this for HF login
11
- from huggingface_hub.utils import HfHubHTTPError # Added this to catch HF login errors
12
- # Initialize Hugging Face Hub login
13
- notebook_login()
14
- # Initialize Accelerator
15
- accelerator = Accelerator()
16
-
17
-
18
- # Load the model file
19
- model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
20
- if not os.path.exists(model_path):
21
- # Download the model file if it doesn't exist
22
- model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
23
- try:
24
- response = requests.get(model_url)
25
- with open(model_path, "wb") as f:
26
- f.write(response.content)
27
- except HfHubHTTPError as e:
28
- if e.response.status_code == 401:
29
- print("Authentication error. Please login to Hugging Face Hub.")
30
- else:
31
- raise e
32
- # Load the document segmentation model
33
- docseg_model = YOLO(model_path)
34
 
 
 
 
35
 
36
- docseg_model = accelerator.prepare(docseg_model)
 
 
 
 
37
 
38
- def process_image(image):
39
  try:
40
- # Convert image to the format YOLO model expects
41
- image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
42
-
43
- # Move image to accelerator
44
- image = torch.from_numpy(image).to(accelerator.device)
45
 
46
- results = docseg_model.predict(image)
47
- result = results[0] # Get the first (and usually only) result
 
48
 
49
- # Extract annotated image from results
50
- annotated_img = result.plot()
51
- annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
52
-
53
- # Prepare detected areas and labels as text output
54
  detected_areas_labels = "\n".join(
55
  [f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes]
56
  )
 
 
57
  except Exception as e:
58
- return None, f"Error during processing: {e}" # Error handling
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- return annotated_img, detected_areas_labels
 
 
61
 
62
- # The rest of the code remains the same (Gradio interface)
 
 
1
  import gradio as gr
2
  from ultralytics import YOLO
 
 
3
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ # Load pre-trained YOLOv8 models
6
+ docseg_model1 = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
7
+ docseg_model2 = YOLO("path/to/your/second/model.pt") # Replace with your second model's path
8
 
9
+ # Available models
10
+ MODELS = {
11
+ "DocLayNet YOLOv8": docseg_model1,
12
+ # "Your Second Model": docseg_model2 # Uncomment and add more as needed
13
+ }
14
 
15
+ def process_image(image, model_name):
16
  try:
17
+ # Select the model
18
+ model = MODELS[model_name]
 
 
 
19
 
20
+ # Process the image
21
+ results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
22
+ result = results[0]
23
 
24
+ # Extract the annotated image and the labels/confidence scores
25
+ annotated_image = result.plot()
 
 
 
26
  detected_areas_labels = "\n".join(
27
  [f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes]
28
  )
29
+
30
+ return annotated_image, detected_areas_labels
31
  except Exception as e:
32
+ return None, f"Error processing image: {e}"
33
+
34
+
35
+
36
+ # Create the Gradio Interface
37
+ with gr.Blocks() as demo:
38
+ gr.Markdown("# Document Segmentation Demo")
39
+
40
+ # Input Components
41
+ with gr.Row():
42
+ input_image = gr.Image(type="pil", label="Upload Image")
43
+ model_dropdown = gr.Dropdown(list(MODELS.keys()), label="Select Model", value=list(MODELS.keys())[0])
44
+
45
+ # Output Components
46
+ output_image = gr.Image(type="pil", label="Annotated Image")
47
+ output_text = gr.Textbox(label="Detected Areas and Labels")
48
 
49
+ # Button to trigger inference
50
+ btn = gr.Button("Run Document Segmentation")
51
+ btn.click(fn=process_image, inputs=[input_image, model_dropdown], outputs=[output_image, output_text])
52
 
53
+ # Launch the demo
54
+ demo.launch()