Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,41 +13,55 @@ install("pandas")
|
|
| 13 |
install("scikit-learn")
|
| 14 |
install("gradio")
|
| 15 |
|
| 16 |
-
|
| 17 |
-
from transformers import AutoModel, AutoTokenizer
|
| 18 |
-
import torch
|
| 19 |
-
from torch.utils.data import DataLoader, Dataset
|
| 20 |
-
from sklearn.model_selection import train_test_split
|
| 21 |
import pandas as pd
|
| 22 |
import gradio as gr
|
| 23 |
-
import
|
| 24 |
|
| 25 |
# Load the pre-trained model and tokenizer
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Function to load the dataset
|
| 30 |
def load_dataset():
|
| 31 |
-
# Use the uploaded file path
|
| 32 |
file_path = "Valid-part-2.xlsx"
|
| 33 |
if not os.path.exists(file_path):
|
| 34 |
raise FileNotFoundError(f"Dataset not found. Please ensure that '{file_path}' exists.")
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Function to search by name and return the PEC number
|
| 41 |
def search_by_name(name, df):
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
# Gradio interface
|
| 49 |
def build_interface():
|
| 50 |
df = load_dataset() # Load your dataset
|
|
|
|
|
|
|
|
|
|
| 51 |
iface = gr.Interface(
|
| 52 |
fn=lambda name: search_by_name(name, df),
|
| 53 |
inputs=gr.Textbox(label="Please write your Name"),
|
|
@@ -59,9 +73,13 @@ def build_interface():
|
|
| 59 |
|
| 60 |
# Main function to run the Gradio app
|
| 61 |
if __name__ == "__main__":
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
| 63 |
iface = build_interface()
|
| 64 |
-
iface
|
| 65 |
-
|
| 66 |
-
|
|
|
|
| 67 |
|
|
|
|
| 13 |
install("scikit-learn")
|
| 14 |
install("gradio")
|
| 15 |
|
| 16 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
import pandas as pd
|
| 18 |
import gradio as gr
|
| 19 |
+
from transformers import AutoModel, AutoTokenizer
|
| 20 |
|
| 21 |
# Load the pre-trained model and tokenizer
|
| 22 |
+
def load_model_and_tokenizer():
|
| 23 |
+
try:
|
| 24 |
+
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 26 |
+
return model, tokenizer
|
| 27 |
+
except Exception as e:
|
| 28 |
+
print(f"Error loading model or tokenizer: {e}")
|
| 29 |
+
return None, None
|
| 30 |
|
| 31 |
# Function to load the dataset
|
| 32 |
def load_dataset():
|
|
|
|
| 33 |
file_path = "Valid-part-2.xlsx"
|
| 34 |
if not os.path.exists(file_path):
|
| 35 |
raise FileNotFoundError(f"Dataset not found. Please ensure that '{file_path}' exists.")
|
| 36 |
|
| 37 |
+
try:
|
| 38 |
+
df = pd.read_excel(file_path)
|
| 39 |
+
print("Columns in the dataset:", df.columns.tolist())
|
| 40 |
+
return df
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"Error loading dataset: {e}")
|
| 43 |
+
return None
|
| 44 |
|
| 45 |
# Function to search by name and return the PEC number
|
| 46 |
def search_by_name(name, df):
|
| 47 |
+
if df is None:
|
| 48 |
+
return "Error: Dataset not loaded."
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
name_matches = df[df['name'].str.contains(name, case=False, na=False)]
|
| 52 |
+
if not name_matches.empty:
|
| 53 |
+
return f"Your PEC number: {name_matches['PEC number'].values[0]}"
|
| 54 |
+
else:
|
| 55 |
+
return "No matches found for your name."
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"Error during search: {e}"
|
| 58 |
|
| 59 |
# Gradio interface
|
| 60 |
def build_interface():
|
| 61 |
df = load_dataset() # Load your dataset
|
| 62 |
+
if df is None:
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
iface = gr.Interface(
|
| 66 |
fn=lambda name: search_by_name(name, df),
|
| 67 |
inputs=gr.Textbox(label="Please write your Name"),
|
|
|
|
| 73 |
|
| 74 |
# Main function to run the Gradio app
|
| 75 |
if __name__ == "__main__":
|
| 76 |
+
model, tokenizer = load_model_and_tokenizer()
|
| 77 |
+
if model is None or tokenizer is None:
|
| 78 |
+
print("Failed to load model or tokenizer. Exiting.")
|
| 79 |
+
else:
|
| 80 |
iface = build_interface()
|
| 81 |
+
if iface is not None:
|
| 82 |
+
iface.launch()
|
| 83 |
+
else:
|
| 84 |
+
print("Failed to build interface due to dataset issues.")
|
| 85 |
|