atifsial123 commited on
Commit
68b29f4
·
verified ·
1 Parent(s): 823ded0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -5
app.py CHANGED
@@ -20,6 +20,7 @@ from torch.utils.data import DataLoader, Dataset
20
  from sklearn.model_selection import train_test_split
21
  import pandas as pd
22
  import gradio as gr
 
23
 
24
  # Load the pre-trained model and tokenizer
25
  model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
@@ -27,15 +28,20 @@ tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", t
27
 
28
  # Function to load the dataset
29
  def load_dataset():
30
- df = pd.read_excel("data.xlsx") # Ensure the file name and path are correct
 
 
 
 
 
31
  print("Columns in the dataset:", df.columns.tolist())
32
  return df
33
 
34
  # Function to search by name and return the PEC number
35
  def search_by_name(name, df):
36
- name_matches = df[df['Name'].str.contains(name, case=False, na=False)]
37
  if not name_matches.empty:
38
- return f"Your PEC number: {name_matches['PEC No'].values[0]}"
39
  else:
40
  return "No matches found for your name."
41
 
@@ -53,5 +59,9 @@ def build_interface():
53
 
54
  # Main function to run the Gradio app
55
  if __name__ == "__main__":
56
- iface = build_interface()
57
- iface.launch()
 
 
 
 
 
20
  from sklearn.model_selection import train_test_split
21
  import pandas as pd
22
  import gradio as gr
23
+ import os
24
 
25
  # Load the pre-trained model and tokenizer
26
  model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
 
28
 
29
  # Function to load the dataset
30
  def load_dataset():
31
+ # Use the uploaded file path
32
+ file_path = "Valid-part-2.xlsx"
33
+ if not os.path.exists(file_path):
34
+ raise FileNotFoundError(f"Dataset not found. Please ensure that '{file_path}' exists.")
35
+
36
+ df = pd.read_excel(file_path) # Load the Excel file
37
  print("Columns in the dataset:", df.columns.tolist())
38
  return df
39
 
40
  # Function to search by name and return the PEC number
41
  def search_by_name(name, df):
42
+ name_matches = df[df['name'].str.contains(name, case=False, na=False)]
43
  if not name_matches.empty:
44
+ return f"Your PEC number: {name_matches['PEC number'].values[0]}"
45
  else:
46
  return "No matches found for your name."
47
 
 
59
 
60
  # Main function to run the Gradio app
61
  if __name__ == "__main__":
62
+ try:
63
+ iface = build_interface()
64
+ iface.launch()
65
+ except FileNotFoundError as e:
66
+ print(str(e))
67
+