File size: 2,191 Bytes
823ded0
8272ce2
 
 
 
 
 
 
 
 
 
 
 
f13a3ca
 
a78f83f
c12ca9b
e403126
c68cde2
 
b9b4dd3
 
c68cde2
c12ca9b
 
c68cde2
 
 
c12ca9b
c68cde2
 
 
 
 
 
 
c12ca9b
c68cde2
 
 
c12ca9b
 
c68cde2
9e57aa8
c68cde2
 
b9b4dd3
 
 
 
 
 
 
c12ca9b
c68cde2
 
 
 
 
 
 
 
e403126
c12ca9b
e403126
c68cde2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import subprocess

# Function to install a package if it is not already installed
def install(package):
    subprocess.check_call([os.sys.executable, "-m", "pip", "install", package])

# Ensure the necessary packages are installed
install("transformers")
install("torch")
install("pandas")
install("gradio")

import pandas as pd
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch

# Load the dataset containing PEC numbers and names
def load_dataset(file_path='PEC_Numbers_and_Names.xlsx'):
    if not os.path.exists(file_path):
        raise FileNotFoundError(f"File not found: {file_path}")
    df = pd.read_excel(file_path)
    return df

# Load the model and tokenizer from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)

# Define the function to get the name based on the PEC number
def get_name(pec_number, df):
    result = df[df['PEC No.'] == pec_number]
    if not result.empty:
        return result.iloc[0]['Name']
    else:
        return "PEC Number not found."

# Function to process the PEC number using the Hugging Face model
def process_with_model(pec_number):
    inputs = tokenizer(pec_number, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()

# Combine both functions to create a prediction
def predict(pec_number):
    try:
        df = load_dataset()
        name = get_name(pec_number, df)
        model_output = process_with_model(pec_number)
        return f"Name: {name}\nModel Output: {model_output}"
    except FileNotFoundError as e:
        return str(e)

# Build the Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Textbox(lines=1, placeholder="Enter PEC Number..."),
    outputs="text",
    title="PEC Number Lookup with Model Integration",
    description="Enter a PEC number to retrieve the corresponding name and process it with a Hugging Face model."
)

# Run the Gradio interface
if __name__ == "__main__":
    iface.launch()