Yolo11 / app.py
atalaydenknalbant's picture
Update app.py
9c39e47 verified
raw
history blame
7.95 kB
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from ultralytics import YOLO
import spaces
import cv2
import numpy as np
import tempfile
@spaces.GPU
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
if input_type == "Image":
if image is None:
width, height = 640, 480
blank_image = Image.new("RGB", (width, height), color="white")
draw = ImageDraw.Draw(blank_image)
message = "No image provided"
font = ImageFont.load_default(size=40)
bbox = draw.textbbox((0, 0), message, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
text_x = (width - text_width) / 2
text_y = (height - text_height) / 2
draw.text((text_x, text_y), message, fill="black", font=font)
return blank_image, None
model = YOLO(model_id)
results = model.predict(
source=image,
conf=conf_threshold,
iou=iou_threshold,
imgsz=640,
max_det=max_detection,
show_labels=True,
show_conf=True,
)
for r in results:
image_array = r.plot()
annotated_image = Image.fromarray(image_array[..., ::-1])
return annotated_image, None
elif input_type == "Video":
if video is None:
width, height = 640, 480
blank_image = Image.new("RGB", (width, height), color="white")
draw = ImageDraw.Draw(blank_image)
message = "No video provided"
font = ImageFont.load_default(size=40)
bbox = draw.textbbox((0, 0), message, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
text_x = (width - text_width) / 2
text_y = (height - text_height) / 2
draw.text((text_x, text_y), message, fill="black", font=font)
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
out.write(frame)
out.release()
return None, temp_video_file
model = YOLO(model_id)
cap = cv2.VideoCapture(video)
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
results = model.predict(
source=pil_frame,
conf=conf_threshold,
iou=iou_threshold,
imgsz=640,
max_det=max_detection,
show_labels=True,
show_conf=True,
)
for r in results:
annotated_frame_array = r.plot()
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
frames.append(annotated_frame)
cap.release()
if len(frames) == 0:
return None, None
height_out, width_out, _ = frames[0].shape
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
for f in frames:
f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
out.write(f_bgr)
out.release()
return None, temp_video_file
else:
return None, None
def update_visibility(input_type):
"""
Show/hide image/video input and output depending on input_type.
"""
if input_type == "Image":
# image, video, output_image, output_video
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
"""
This is called by gr.Examples. We force the radio to 'Image'
and then do a standard image inference, returning both updated radio
value and the annotated image.
"""
annotated_image, _ = yolo_inference(
input_type="Image",
image=image,
video=None,
model_id=model_id,
conf_threshold=conf_threshold,
iou_threshold=iou_threshold,
max_detection=max_detection
)
return gr.update(value="Image"), annotated_image
with gr.Blocks() as app:
gr.Markdown("# Yolo11: Object Detection, Instance Segmentation, Pose/Keypoints, Oriented Detection, Classification")
gr.Markdown("Upload image(s) or video(s) for inference using the latest Ultralytics YOLO11 models.")
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image", visible=True)
video = gr.Video(label="Video", visible=False)
input_type = gr.Radio(
choices=["Image", "Video"],
value="Image",
label="Input Type",
)
model_id = gr.Dropdown(
label="Model Name",
choices=[
'yolo11n.pt', 'yolo11s.pt', 'yolo11m.pt', 'yolo11l.pt', 'yolo11x.pt',
'yolo11n-seg.pt', 'yolo11s-seg.pt', 'yolo11m-seg.pt', 'yolo11l-seg.pt', 'yolo11x-seg.pt',
'yolo11n-pose.pt', 'yolo11s-pose.pt', 'yolo11m-pose.pt', 'yolo11l-pose.pt', 'yolo11x-pose.pt',
'yolo11n-obb.pt', 'yolo11s-obb.pt', 'yolo11m-obb.pt', 'yolo11l-obb.pt', 'yolo11x-obb.pt',
'yolo11n-cls.pt', 'yolo11s-cls.pt', 'yolo11m-cls.pt', 'yolo11l-cls.pt', 'yolo11x-cls.pt'
],
value="yolo11n.pt",
)
conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold")
max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection")
infer_button = gr.Button("Detect Objects")
with gr.Column():
output_image = gr.Image(type="pil", label="Annotated Image", visible=True)
output_video = gr.Video(label="Annotated Video", visible=False)
# Toggle input/output visibility
input_type.change(
fn=update_visibility,
inputs=input_type,
outputs=[image, video, output_image, output_video],
)
# Main inference for button click
infer_button.click(
fn=yolo_inference,
inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection],
outputs=[output_image, output_video],
)
# Examples for images only
gr.Examples(
examples=[
["zidane.jpg", "yolo11s.pt", 0.25, 0.45, 300],
["bus.jpg", "yolo11m.pt", 0.25, 0.45, 300],
["yolo_vision.jpg", "yolo11x.pt", 0.25, 0.45, 300],
["Tricycle.jpg", "yolo11x-cls.pt", 0.25, 0.45, 300],
["tcganadolu.jpg", "yolo11m-obb.pt", 0.25, 0.45, 300],
["San Diego Airport.jpg", "yolo11x-seg.pt", 0.25, 0.45, 300],
["Theodore_Roosevelt.png", "yolo11l-pose.pt", 0.25, 0.45, 300],
],
fn=yolo_inference_for_examples,
inputs=[image, model_id, conf_threshold, iou_threshold, max_detection],
outputs=[input_type, output_image],
label="Examples (Images)",
cache_examples=True,
)
if __name__ == '__main__':
app.launch()