Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from PIL import Image, ImageDraw, ImageFont | |
from ultralytics import YOLO | |
import spaces | |
import cv2 | |
import numpy as np | |
import tempfile | |
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection): | |
if input_type == "Image": | |
if image is None: | |
width, height = 640, 480 | |
blank_image = Image.new("RGB", (width, height), color="white") | |
draw = ImageDraw.Draw(blank_image) | |
message = "No image provided" | |
font = ImageFont.load_default(size=40) | |
bbox = draw.textbbox((0, 0), message, font=font) | |
text_width = bbox[2] - bbox[0] | |
text_height = bbox[3] - bbox[1] | |
text_x = (width - text_width) / 2 | |
text_y = (height - text_height) / 2 | |
draw.text((text_x, text_y), message, fill="black", font=font) | |
return blank_image, None | |
model = YOLO(model_id) | |
results = model.predict( | |
source=image, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
imgsz=640, | |
max_det=max_detection, | |
show_labels=True, | |
show_conf=True, | |
) | |
for r in results: | |
image_array = r.plot() | |
annotated_image = Image.fromarray(image_array[..., ::-1]) | |
return annotated_image, None | |
elif input_type == "Video": | |
if video is None: | |
width, height = 640, 480 | |
blank_image = Image.new("RGB", (width, height), color="white") | |
draw = ImageDraw.Draw(blank_image) | |
message = "No video provided" | |
font = ImageFont.load_default(size=40) | |
bbox = draw.textbbox((0, 0), message, font=font) | |
text_width = bbox[2] - bbox[0] | |
text_height = bbox[3] - bbox[1] | |
text_x = (width - text_width) / 2 | |
text_y = (height - text_height) / 2 | |
draw.text((text_x, text_y), message, fill="black", font=font) | |
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height)) | |
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR) | |
out.write(frame) | |
out.release() | |
return None, temp_video_file | |
model = YOLO(model_id) | |
cap = cv2.VideoCapture(video) | |
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25 | |
frames = [] | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
results = model.predict( | |
source=pil_frame, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
imgsz=640, | |
max_det=max_detection, | |
show_labels=True, | |
show_conf=True, | |
) | |
for r in results: | |
annotated_frame_array = r.plot() | |
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB) | |
frames.append(annotated_frame) | |
cap.release() | |
if len(frames) == 0: | |
return None, None | |
height_out, width_out, _ = frames[0].shape | |
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out)) | |
for f in frames: | |
f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR) | |
out.write(f_bgr) | |
out.release() | |
return None, temp_video_file | |
else: | |
return None, None | |
def update_visibility(input_type): | |
""" | |
Show/hide image/video input and output depending on input_type. | |
""" | |
if input_type == "Image": | |
# image, video, output_image, output_video | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) | |
else: | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) | |
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection): | |
""" | |
This is called by gr.Examples. We force the radio to 'Image' | |
and then do a standard image inference, returning both updated radio | |
value and the annotated image. | |
""" | |
annotated_image, _ = yolo_inference( | |
input_type="Image", | |
image=image, | |
video=None, | |
model_id=model_id, | |
conf_threshold=conf_threshold, | |
iou_threshold=iou_threshold, | |
max_detection=max_detection | |
) | |
return gr.update(value="Image"), annotated_image | |
with gr.Blocks() as app: | |
gr.Markdown("# Yolo11: Object Detection, Instance Segmentation, Pose/Keypoints, Oriented Detection, Classification") | |
gr.Markdown("Upload image(s) or video(s) for inference using the latest Ultralytics YOLO11 models.") | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(type="pil", label="Image", visible=True) | |
video = gr.Video(label="Video", visible=False) | |
input_type = gr.Radio( | |
choices=["Image", "Video"], | |
value="Image", | |
label="Input Type", | |
) | |
model_id = gr.Dropdown( | |
label="Model Name", | |
choices=[ | |
'yolo11n.pt', 'yolo11s.pt', 'yolo11m.pt', 'yolo11l.pt', 'yolo11x.pt', | |
'yolo11n-seg.pt', 'yolo11s-seg.pt', 'yolo11m-seg.pt', 'yolo11l-seg.pt', 'yolo11x-seg.pt', | |
'yolo11n-pose.pt', 'yolo11s-pose.pt', 'yolo11m-pose.pt', 'yolo11l-pose.pt', 'yolo11x-pose.pt', | |
'yolo11n-obb.pt', 'yolo11s-obb.pt', 'yolo11m-obb.pt', 'yolo11l-obb.pt', 'yolo11x-obb.pt', | |
'yolo11n-cls.pt', 'yolo11s-cls.pt', 'yolo11m-cls.pt', 'yolo11l-cls.pt', 'yolo11x-cls.pt' | |
], | |
value="yolo11n.pt", | |
) | |
conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold") | |
iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold") | |
max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection") | |
infer_button = gr.Button("Detect Objects") | |
with gr.Column(): | |
output_image = gr.Image(type="pil", label="Annotated Image", visible=True) | |
output_video = gr.Video(label="Annotated Video", visible=False) | |
# Toggle input/output visibility | |
input_type.change( | |
fn=update_visibility, | |
inputs=input_type, | |
outputs=[image, video, output_image, output_video], | |
) | |
# Main inference for button click | |
infer_button.click( | |
fn=yolo_inference, | |
inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection], | |
outputs=[output_image, output_video], | |
) | |
# Examples for images only | |
gr.Examples( | |
examples=[ | |
["zidane.jpg", "yolo11s.pt", 0.25, 0.45, 300], | |
["bus.jpg", "yolo11m.pt", 0.25, 0.45, 300], | |
["yolo_vision.jpg", "yolo11x.pt", 0.25, 0.45, 300], | |
["Tricycle.jpg", "yolo11x-cls.pt", 0.25, 0.45, 300], | |
["tcganadolu.jpg", "yolo11m-obb.pt", 0.25, 0.45, 300], | |
["San Diego Airport.jpg", "yolo11x-seg.pt", 0.25, 0.45, 300], | |
["Theodore_Roosevelt.png", "yolo11l-pose.pt", 0.25, 0.45, 300], | |
], | |
fn=yolo_inference_for_examples, | |
inputs=[image, model_id, conf_threshold, iou_threshold, max_detection], | |
outputs=[input_type, output_image], | |
label="Examples (Images)", | |
cache_examples=True, | |
) | |
if __name__ == '__main__': | |
app.launch() | |