Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,69 +2,192 @@ import gradio as gr
|
|
2 |
from PIL import Image, ImageDraw, ImageFont
|
3 |
from ultralytics import YOLO
|
4 |
import spaces
|
|
|
|
|
|
|
5 |
|
6 |
@spaces.GPU
|
7 |
-
def yolo_inference(
|
8 |
-
if
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
)
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
inputs=[
|
42 |
-
gr.Image(type="pil", label="Upload Image"),
|
43 |
-
gr.Dropdown(
|
44 |
-
choices=['yolo11n.pt', 'yolo11s.pt', 'yolo11m.pt', 'yolo11l.pt', 'yolo11x.pt',
|
45 |
-
'yolo11n-seg.pt', 'yolo11s-seg.pt', 'yolo11m-seg.pt', 'yolo11l-seg.pt', 'yolo11x-seg.pt',
|
46 |
-
'yolo11n-pose.pt', 'yolo11s-pose.pt', 'yolo11m-pose.pt', 'yolo11l-pose.pt', 'yolo11x-pose.pt',
|
47 |
-
'yolo11n-obb.pt', 'yolo11s-obb.pt', 'yolo11m-obb.pt', 'yolo11l-obb.pt', 'yolo11x-obb.pt',
|
48 |
-
'yolo11n-cls.pt', 'yolo11s-cls.pt', 'yolo11m-cls.pt', 'yolo11l-cls.pt', 'yolo11x-cls.pt'],
|
49 |
-
label="Model Name",
|
50 |
-
value="yolo11n.pt",
|
51 |
-
),
|
52 |
-
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold"),
|
53 |
-
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold"),
|
54 |
-
gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection"),
|
55 |
-
],
|
56 |
-
outputs=gr.Image(type="pil", label="Annotated Image"),
|
57 |
-
cache_examples=True,
|
58 |
-
title="Yolo11: Object Detection, Instance Segmentation, Pose/Keypoints, Oriented Detection, Classification",
|
59 |
-
description="Upload image(s) for inference using the latest Ultralytics YOLO11 models.",
|
60 |
-
examples=[
|
61 |
-
["zidane.jpg", "yolo11s.pt", 0.25, 0.45, 300],
|
62 |
-
["bus.jpg", "yolo11m.pt", 0.25, 0.45, 300],
|
63 |
-
["yolo_vision.jpg", "yolo11x.pt", 0.25, 0.45, 300],
|
64 |
-
["Tricycle.jpg", "yolo11x-cls.pt", 0.25, 0.45, 300],
|
65 |
-
["tcganadolu.jpg", "yolo11m-obb.pt", 0.25, 0.45, 300],
|
66 |
-
["San Diego Airport.jpg", "yolo11x-seg.pt", 0.25, 0.45, 300],
|
67 |
-
["Theodore_Roosevelt.png", "yolo11l-pose.pt", 0.25, 0.45, 300],
|
68 |
-
],
|
69 |
-
)
|
70 |
-
interface.launch()
|
|
|
2 |
from PIL import Image, ImageDraw, ImageFont
|
3 |
from ultralytics import YOLO
|
4 |
import spaces
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import tempfile
|
8 |
|
9 |
@spaces.GPU
|
10 |
+
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
|
11 |
+
if input_type == "Image":
|
12 |
+
if image is None:
|
13 |
+
width, height = 640, 480
|
14 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
15 |
+
draw = ImageDraw.Draw(blank_image)
|
16 |
+
message = "No image provided"
|
17 |
+
font = ImageFont.load_default(size=40)
|
18 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
19 |
+
text_width = bbox[2] - bbox[0]
|
20 |
+
text_height = bbox[3] - bbox[1]
|
21 |
+
text_x = (width - text_width) / 2
|
22 |
+
text_y = (height - text_height) / 2
|
23 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
24 |
+
return blank_image, None
|
25 |
+
|
26 |
+
model = YOLO(model_id)
|
27 |
+
results = model.predict(
|
28 |
+
source=image,
|
29 |
+
conf=conf_threshold,
|
30 |
+
iou=iou_threshold,
|
31 |
+
imgsz=640,
|
32 |
+
max_det=max_detection,
|
33 |
+
show_labels=True,
|
34 |
+
show_conf=True,
|
35 |
+
)
|
36 |
+
for r in results:
|
37 |
+
image_array = r.plot()
|
38 |
+
annotated_image = Image.fromarray(image_array[..., ::-1])
|
39 |
+
return annotated_image, None
|
40 |
+
|
41 |
+
elif input_type == "Video":
|
42 |
+
if video is None:
|
43 |
+
width, height = 640, 480
|
44 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
45 |
+
draw = ImageDraw.Draw(blank_image)
|
46 |
+
message = "No video provided"
|
47 |
+
font = ImageFont.load_default(size=40)
|
48 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
49 |
+
text_width = bbox[2] - bbox[0]
|
50 |
+
text_height = bbox[3] - bbox[1]
|
51 |
+
text_x = (width - text_width) / 2
|
52 |
+
text_y = (height - text_height) / 2
|
53 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
54 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
55 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
56 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
|
57 |
+
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
|
58 |
+
out.write(frame)
|
59 |
+
out.release()
|
60 |
+
return None, temp_video_file
|
61 |
+
|
62 |
+
model = YOLO(model_id)
|
63 |
+
cap = cv2.VideoCapture(video)
|
64 |
+
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
|
65 |
+
frames = []
|
66 |
+
while True:
|
67 |
+
ret, frame = cap.read()
|
68 |
+
if not ret:
|
69 |
+
break
|
70 |
+
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
71 |
+
results = model.predict(
|
72 |
+
source=pil_frame,
|
73 |
+
conf=conf_threshold,
|
74 |
+
iou=iou_threshold,
|
75 |
+
imgsz=640,
|
76 |
+
max_det=max_detection,
|
77 |
+
show_labels=True,
|
78 |
+
show_conf=True,
|
79 |
+
)
|
80 |
+
for r in results:
|
81 |
+
annotated_frame_array = r.plot()
|
82 |
+
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
|
83 |
+
frames.append(annotated_frame)
|
84 |
+
cap.release()
|
85 |
+
if len(frames) == 0:
|
86 |
+
return None, None
|
87 |
+
|
88 |
+
height_out, width_out, _ = frames[0].shape
|
89 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
90 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
91 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
|
92 |
+
for f in frames:
|
93 |
+
f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
|
94 |
+
out.write(f_bgr)
|
95 |
+
out.release()
|
96 |
+
return None, temp_video_file
|
97 |
+
|
98 |
+
else:
|
99 |
+
return None, None
|
100 |
+
|
101 |
+
def update_visibility(input_type):
|
102 |
+
"""
|
103 |
+
Show/hide image/video input and output depending on input_type.
|
104 |
+
"""
|
105 |
+
if input_type == "Image":
|
106 |
+
# image, video, output_image, output_video
|
107 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
108 |
+
else:
|
109 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
110 |
+
|
111 |
+
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
|
112 |
+
"""
|
113 |
+
This is called by gr.Examples. We force the radio to 'Image'
|
114 |
+
and then do a standard image inference, returning both updated radio
|
115 |
+
value and the annotated image.
|
116 |
+
"""
|
117 |
+
annotated_image, _ = yolo_inference(
|
118 |
+
input_type="Image",
|
119 |
+
image=image,
|
120 |
+
video=None,
|
121 |
+
model_id=model_id,
|
122 |
+
conf_threshold=conf_threshold,
|
123 |
+
iou_threshold=iou_threshold,
|
124 |
+
max_detection=max_detection
|
125 |
)
|
126 |
+
return gr.update(value="Image"), annotated_image
|
127 |
|
128 |
+
with gr.Blocks() as app:
|
129 |
+
gr.Markdown("# Yolo11: Object Detection, Instance Segmentation, Pose/Keypoints, Oriented Detection, Classification")
|
130 |
+
gr.Markdown("Upload image(s) or video(s) for inference using the latest Ultralytics YOLO11 models.")
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
with gr.Column():
|
134 |
+
image = gr.Image(type="pil", label="Image", visible=True)
|
135 |
+
video = gr.Video(label="Video", visible=False)
|
136 |
+
input_type = gr.Radio(
|
137 |
+
choices=["Image", "Video"],
|
138 |
+
value="Image",
|
139 |
+
label="Input Type",
|
140 |
+
)
|
141 |
+
model_id = gr.Dropdown(
|
142 |
+
label="Model Name",
|
143 |
+
choices=[
|
144 |
+
'yolo11n.pt', 'yolo11s.pt', 'yolo11m.pt', 'yolo11l.pt', 'yolo11x.pt',
|
145 |
+
'yolo11n-seg.pt', 'yolo11s-seg.pt', 'yolo11m-seg.pt', 'yolo11l-seg.pt', 'yolo11x-seg.pt',
|
146 |
+
'yolo11n-pose.pt', 'yolo11s-pose.pt', 'yolo11m-pose.pt', 'yolo11l-pose.pt', 'yolo11x-pose.pt',
|
147 |
+
'yolo11n-obb.pt', 'yolo11s-obb.pt', 'yolo11m-obb.pt', 'yolo11l-obb.pt', 'yolo11x-obb.pt',
|
148 |
+
'yolo11n-cls.pt', 'yolo11s-cls.pt', 'yolo11m-cls.pt', 'yolo11l-cls.pt', 'yolo11x-cls.pt'
|
149 |
+
],
|
150 |
+
value="yolo11n.pt",
|
151 |
+
)
|
152 |
+
conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
153 |
+
iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold")
|
154 |
+
max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection")
|
155 |
+
infer_button = gr.Button("Detect Objects")
|
156 |
+
with gr.Column():
|
157 |
+
output_image = gr.Image(type="pil", label="Annotated Image", visible=True)
|
158 |
+
output_video = gr.Video(label="Annotated Video", visible=False)
|
159 |
+
|
160 |
+
# Toggle input/output visibility
|
161 |
+
input_type.change(
|
162 |
+
fn=update_visibility,
|
163 |
+
inputs=input_type,
|
164 |
+
outputs=[image, video, output_image, output_video],
|
165 |
+
)
|
166 |
+
|
167 |
+
# Main inference for button click
|
168 |
+
infer_button.click(
|
169 |
+
fn=yolo_inference,
|
170 |
+
inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection],
|
171 |
+
outputs=[output_image, output_video],
|
172 |
+
)
|
173 |
+
|
174 |
+
# Examples for images only
|
175 |
+
gr.Examples(
|
176 |
+
examples=[
|
177 |
+
["zidane.jpg", "yolo11s.pt", 0.25, 0.45, 300],
|
178 |
+
["bus.jpg", "yolo11m.pt", 0.25, 0.45, 300],
|
179 |
+
["yolo_vision.jpg", "yolo11x.pt", 0.25, 0.45, 300],
|
180 |
+
["Tricycle.jpg", "yolo11x-cls.pt", 0.25, 0.45, 300],
|
181 |
+
["tcganadolu.jpg", "yolo11m-obb.pt", 0.25, 0.45, 300],
|
182 |
+
["San Diego Airport.jpg", "yolo11x-seg.pt", 0.25, 0.45, 300],
|
183 |
+
["Theodore_Roosevelt.png", "yolo11l-pose.pt", 0.25, 0.45, 300],
|
184 |
+
],
|
185 |
+
fn=yolo_inference_for_examples,
|
186 |
+
inputs=[image, model_id, conf_threshold, iou_threshold, max_detection],
|
187 |
+
outputs=[input_type, output_image],
|
188 |
+
label="Examples (Images)",
|
189 |
+
cache_examples=True,
|
190 |
+
)
|
191 |
|
192 |
+
if __name__ == '__main__':
|
193 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|